SAFESIGHT

— DRIVER SAFETY —

Authors:
Albert Lougedo Matthew Carvajal Mahyar Mahtabfar
Electrical Computer Electrical
Engineering Engineering Engineering

Reviewer Committee:
Dr. Reza Adbolavand Dr. Sonali Das Dr. Mikhael B. Wasfy

Professor Professor Professor
Electrical Electrical Electrical
Engineering Engineering Engineering

Advisor:

Dr. ChungYong Chan

November 25" 2025

Table of Contents

1. Introduction / Narrative..........cccocciiiiiiiniicneirrss s s 1
1.1 Project BackgroUnd............ooiiiiiiiie e 1
1.2 Project Motivation / Current Commercial Technologies..........cccccoiiiiiiiiiiiiinninnnen. 2
1.3 ProjeCt FUNCHON.......cco s 2

2. Project Objectives, Requirements, and Goals..........ccccceeeeeviiiiiiccccscccccccccccs s 4
2.1 Project ODJECHVES.uueiiiieii it aa e 4
2.2 GOAIS. ... e e e e e e e e ee et a e aaareeeaara——— 5
2.3 Requirement Specifications and Constraints.............ccccccoveeeiiiiiiiiicice e 6
2.4 Engineering Specifications............covvviiiiiiiiiiii 7
2.5 System Diagram and Visualization......................ccccc 9

G T 3 ==Y 1o o TSSO 13
3.1 TECNNOIOGIES. ...t e e e e e e e 13

31T RASPDEITY Pl 13
3.1.1.1 Raspberry Pi vs. Jetson Nano...........ccccvvvvivviiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeee 13
3.1.1.2 Availability and EffiCiENCy...........ccccuviviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 13
3.1.1.3 Hardware ACCESSOIIES........couuuiiiieiieeeeeeeeeeiee e e e et e e e e eeeenaeas 14
3.1.1.4 Passive vs. Active COOlING........ccuuiiiiiieiiiiieeeee e 14
3.1.1.5 CamEra ACCESSOIY....cceieiiiiiiiiiiiiee e e e ettt e e e e e ettt e e e e e e e anneeeeeaaeeeas 15
3.1.1.6 Raspberry Pi 5 Physical Diagram...........cccoovvviviiiiiiiiiiiie e, 16

3.1.2 mmWave C4001 24GHz Human Presence Detection Sensor.................... 17

3.1.3 IN€rtAl SENSO ... 22
3.1.3.1 MPU-=B050......ccceee it e e e e e e e e e e e e ennnees 24
3.1.3.2 Sensor Limitations...........ccccuuiiiiiiiiiiiiiiiiiiiiiieieeeee e 26

3.1.4 Alarm SyYStemM. ..o —————— 26
3.1.4.1 Speaker and AmMpIlifier..........cooii i 26
3.1.4.2 ESP 32 Compatibility.........ccooouumiiiiieeeeiciiiee e 27
3.1.4.3 Piezo EIeCtriCc BUZZET ..o 27
3.1.4.4 ESP32 Compatibility..........cccoiuriiieieeeieiiieieee e 27

B 0 5 1Y RSP 28
K I TR B] SRR 28
3.1.5.2 Raspberry Pi PiCO........ccouiiiiiiiiiiiii e 29
3.1.5.3 STMB2 SEIIES....cccceeieieiee ettt e e e e e s rreeeaa s 30
3.1.5.4 ArduinO NaNO.........coooiiiiii i 31
3.1.5.5 TEENSY .. ———— 33
3.1.5.6 Our Selection: ESP32.........ooiiiiiieee e 34

3.1.6 MCU Communication Protocols For Components...............eeeveiveeieeeeeennen.. 34
3.1.6.1 UART Communication ProtoCol...............eeueeiiiiiiiiiiiiiiiiiiiiiceeieeeeeee e 34
3.1.6.2 SPI Communication ProtoCol...........cccceeiiiiiiiiiveeaees 36

3.1.6.3 12C Communication ProtOCOL..........coeeuieeeeeee e 37

3.1.6.4 SUMMAIY...coiiiiiiiiiieii ettt e e e e e eee e e e e 38

3.1.7 Development Environment: Languages and Repositories............ccccceeee... 39
I 0 L0 SRR 39
3.1.7.2 SWift & SWIft Ul...ooiiiie e 40

B Tt A0 T - 1Y 41
174 PYINON . 41
BA7.5 GitHUD. ... 42
3176 BIHDUCKE!. ... 42
3.1.7.7 Our Selection: C/C++, Swift/SwiftUl, Git/GitHub....................cceee 43

3.1.8 CoMPULET VISION....eeiiiiiiiiiiiiiieeieeeee e 44
3.1.8.2 Tensorflow and TensorflowLite............covvvvviiiiiiiiiiiiii 45

318 .3 KEIaS. ..o 45
31814 YOLO ..ottt e e e e e e e e e 46
3.1.8.5 SCIKIt-IMAGE.....eeiiiiie e 46

4. Standards and Design Constraints..........ccccccininiinmmmme s, 48
4.1 Industrial Standards..........coooe i ———— 48
4.1.1 PCB Design Standards.............coooooiiiiiiii e 48
4.1.2 UART Communication Method Standards..........ccccccovviiiiiiiieeiiiiiieeeeen 51
4.1.3 12C Protocol Standards..........cceeeiiiiiiiiiiiieee e 53
4.2 Design CONSIraiNtS.........uuiiiiiiiiiiiiee e 54
g T2 V= 55
4.2.2 ECONOMIC.uiiieiieee oottt e e e e e et e e e e e e e s neeeeeeeeeann 56
4.2.3 Federal Regulation Constraints...........ccooiiiiiiiiiiiiiiies 57
4.2.4 Remaining ConstraintS..........cooiiiiiiiiii e e e e 58
4.2.4.1 Health and Safety..........oooouiiiiiiiii e 58
4.2.4.2 Manufacturability...............ooeeiiiii e 58

5. Artificial Intelligence COmMPariSON...........ccucviiiiiieeeeees s s s 59
ST I O 4 = 1 SRS 59
5.2 PeIPIEXITY. ... e 60
5.3 Benefits Of USING Al 62
L o = 1o Vo T =T 1= T o R 63
6.1 Power Supply Design - Regulators...........ccccccoiiiiiiiiiiiiiiiiiiiiieieeesveeeveeeeeeeeeeeeee 64
6.1.1 ESP 32 Power Supply Regulator - TPS564252...........coovvvvvvvieiiieiiiiniennen. 65
6.1.2 Raspberry Pi Power Supply Regulator - TPS566242.............cccevvveeeiiinns 67
6.2 Development Board - ESP32........coooiiiiiiie e, 68
6.2.1 Micro USB - UART Conversion Schematic..................ccccceeeie e, 69
6.2.2 IC CP2102 - UART Conversion SchematicC..........cccccooviiiiiiiieeiiiiiiieeeen 69
6.2.3 AMS1117 - USB 5V - 3.3V Power Supply Converter....................cc........ 70
6.3 Custom Footprints - Schematic to PCB...........ooooiiiiii, 71
6.3.1 C4001 Radar Sensor - Custom Footprint.............ceeeeeiiiiiiiiiiiiiiiiiiiiieeiceeeee, 71

6.3.2 MPU-6050 Accelerometer - Custom Footprint..........cccccoovvi. 72

6.4 Final Schematic - All Components Included........................, 73

7. SOftWAre DESIgN.....occceiriiiir i 75
7.1 Software Logic Introduction - SCenarios.............cccccuiiiiiiiiiiiiiiiiiieee e 75
7.1.1 Red-Light SCENAIIO......uueiiiiiiiiiiiee e 75

7.1.2 Driver Distracted While Driving Scenario.......c.cccccccvvvviiiiiiiiiiiiii 76

AV Y o] o] [Toz= 11 ToT T D= Y1 o o 1SRN 77
7.2.1 Initial Design and Thought ProCess............c.uueiiiiiiiiiiiiiieiee e 77

7.2.2 The STArt SCIrEEN.......uvieiiieeeeeeeeeeeeee ettt a e e e e e e e e e e e e 78

7.2.3 Bluetooth Device Selection...........ccccccuuveiiiiiiiiiiiiiiiiiiiiiieereeeeeeeeee e 79

7.2.4 The HOME SCreeN... ..ot e e e e 80

7.2.4.1 The Home Screen: Driver Report..........ccuvvvvivviiiiiiiieeiieeeeeeeeeeeeeeeeeeee 80

7.2.4.2 The Home Screen: Live Camera Feed & Photo Gallery.................... 81

7.2.4.3 The Home Screen: Profile Page...........cccuveeiiiiiiiiiiieeee 82

8. System Fabrication/ Prototype Construction............ccccceeeriimnnmmmnmmmmmnmnceneeeeeeeeeeees 83
8.1 PCB Design - Organization............c.coeviiiiiiiiiiiiiiiieeeeeeeeee e, 83
8.2 PCB DeSign - ROULING.....cuiiiiiiiiiiiiiieeeeeeeeeeeee e, 84
8.3 PCB Design - DRC and 3D/2D Verification.............cccuuiiiiiiiiiiiiiiiieeeee e 85

9. System Testing and Evaluation..........ccccccviiiiiiiiiiimini s 87
9.1 Radar INtegration.............ueiiiiiii s 87
9.2 MCU-6050 Integration...........coooe i 88
9.3 Radar, Accelerometer, and Raspberry Pi integration...........cccccccceeeeiiiiiriieiiinnnnnn, 90
10. Administrative Content.............ooooii i ——————— 93
10.1 Budget and FIN@NCING........cooiiiiiiiiii s 93
10.2 Milestones for the ProjecCt............ooiii i 93
10.2.1 Senior DEsign 1. ... 94

10.2.2 Senior DESIN 2. 94

10.3 Table of Work Distribution............coooiii e 96

B TR 0o T 1 L= 1o Y T 97
Appendix A - References...........ccooemimiiiieiir s s 929
Appendix B- LLM Prompts........cccoiiiemmciiiniiirissicessssssssseesssssssssssssssssssssssmsssssssssssssnnes 104

List of Figures

Figure 2.5.4 House of QUality.........couiniiiii e 12
Figure 3.1.1.4.1 Heat SinkK. ..o e 14
Figure 3.1.1.4.2 Raspberry Pi Active COOIEr...........ooiiiiiii e, 15
Figure 3.1.1.5.1 Raspberry PiV2Module............ccooiiiiii e, 16
Figure 3.1.1.6.1 Raspberry Pi 5 Physical Diagram............c.cccooiiiiiiiiiiiiins 17
Figure 3.1.2.1 DFRobot C4001 Radar............coiiiiiiiii e 18
Figure 3.1.2.2 mm-wave sensor vs Infrared Sensor Comparison.............c.cccvvuvuennnn. 19
Figure 3.1.2.3 Dimension Layout for C4001 mmWave Sensor..................cccooeeennne. 19

Figure 3.1.3.1.1 MPU-6050...........oo e 24

Figure 3.1.3.1.2 MPU-6050 SeNsOr PiNOUL..........oiuiiriiii e 25
Figure 3.1.5.1.1 ESP-32 Schematic for applicational use...................ccoiiiiiiinnn. 28
Figure 3.1.5.1.2 ESP32 Microcontroller............cooiiiiiiii e 29
Figure 3.1.5.2.1 Raspberry Pi Pico Microcontroller. ..o, 30
Figure 3.1.5.3.1 STM32 Nucleo F411RE Microcontroller..................cccooiiiiiiiininnn. 31
Figure 3.1.5.4.1 Arduino Nano Microcontroller..............c.ooiiiiiiiiiii e, 33
Figure 3.1.5.5.1 Teensy 4.1 Microcontroller. ..., 33
Figure 3.1.6.1.1 UART Configuration..............oooiiiiiii e, 35
Figure 3.1.6.1.2 UART Frame........o.ouiiiiii e 35
Figure 3.1.6.2.1 SPI Configuration...............ccoiiiiiiii e, 36
Figure 3.1.6.3.1 12C Configuration............cooieieiii e 37
Figure 3.1.6.3.2 12C Frame. 38
Figure 4.1.1.1 Hierarchy of IPC Design Specifications.................ccoooiiiiiiii, 49
Figure 4.1.2.1 Comparison of UART Standards..............cccooiiiiiiiiiiiiiieen 52
Figure 4.1.3.1 12C Multi-Master Multi-Slave Communication....................c..ccooeinie 54
Figure 5.1.1 ChatGPT Usage Example. ... 60
Figure 5.1.2 Perplexity Ai Usage Example. ..o 61
Figure 6.1.1.1 Power Supply Regulator Schematic.....................oocl 65
Figure 6.1.1.2 Power Supply Efficiency Graph...........ccooiiiiiiiiee, 66
Figure 6.1.1.3 Total Power Supply Schematic................cooooiiiii 66
Figure 6.1.2.1 Pi Regulator Schematic. ..o, 67
Figure 6.1.2.2 Pi Full Power Supply SchematiC.............ccooiiiiiiiiee 67
Figure 6.1.2.3 TPS566242 Efficiency Graph...........cccooiiiiiiiii e, 68
Figure 6.2.1.1 Micro USB Conversion SchematiC..............ccoooiiiiiiiiie, 69
Figure 6.2.2.1 UART Conversion SchematicC..............ccooiiiiiiiiiiiiiiiiieeeeea 70
Figure 6.2.3.1 USB 3.3V PWC SchematiC............coooiiiiiiiiiiiice e 70
Figure 6.3.1.1 C4001 Radar Sensor Layout..............cooiiiiiiiiiiii e, 71
Figure 6.3.1.2 C4001 Custom Footprint............cooiiiiii e, 72
Figure 6.3.2.1 MPU-6050 LayOut...........ouiuiniiiii e 72
Figure 6.3.2.2 MPU-6050 Custom Footprint............cooiiiiiiiii e 73
Figure 6.4.1 Final Schematic - All Components. ..o 74
Figure 6.4.2 Final Schematic - All Components Pt 2., 74
Figure 7.1.1.1 Red Light Scenario Flowchart.....................co 76
Figure 7.1.2.1 Driver Distracted While Driving Scenario.............c.coovoiiiiiiiiiinnninn, 77
Figure 7.2.2.1 Application Start Screen........ ... 78
Figure 7.2.3.1 Bluetooth Device Selection Screen..............ccoiiiiiiiiiiiiiiiciii, 79
Figure 7.2.4.1.1 Driver Report Tab View Current State..................oooii, 80
Figure 7.2.4.2.1 Live Camera Feed & Photo Gallery Tab View Current State............... 81
Figure 7.2.4.3.1 Profile Page Tab View Current State................coooiiiiiii 82
Figure 8.1.1 PCB Organization............c.ouiuiii e 84
Figure 8.2.1 PCB Trace ROULING.........coviriiiii e, 84
Figure 8.2.1 CheCk DRC OPliON.t 85

Figure 8.2.2 DRC ComPIEtioN. 85

Figure 8.2.3 Modern PCB Cad Layout............coooiiiiiiii e, 86
Figure 8.2.4 3D PCB VIBW.... .. 86
Figure 10.1.1 Total Money Spent so Far...........cooiiiiiiiiii e 93

List of Tables

Table 2.4.1 Hardware Component Specifications...............ccoo oot 8
Table 2.4.2 Tentative Bill of Materials...........coooreiie e 9
Table 2.5.1 Software BIOCK Diagrami...............uuuiiiiiiiiiiiiiiiiirieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaaeaas 9
Table 2.5.2 Software Block Diagram (2)..........eeeeeeiiiiiiiiiieee et 10
Table 2.5.3 Hardware BIOCK Diagram............uueeiiiiiiiiiiiiiiee e 11
Table 3.1.3.1 Inertial SENSOr COMPAIISON.........uuuuuueiiiiiiiiiiiiieitrirrr e e e e e e aaeneaaeans 24
Table 3.1.5.5.1 MCU Comparison Chart...........cooooiiiiiiiiiii e 35
Table 3.1.6.4.1 Communication Chart Comparison..........cccccccccviiiiiiiiiiiiiii 40
Table 3.1.7.7.1 Pros and Cons of Development Technologies...........cccccccoiiiiiiiieiiinnnns 44
Table 3.1.8.5.1 Computer Vision Comparison Table..............cccco 47
Table 10.2.2.1 Senior Design 1 and 2 Milestones..........c.ccccccoviiiiiii 96
Table 10.3.1 Work Distribution Table............cccccuuuiiiiiiiiiiiiiiiiiiiiiieeeieeeieeeee e 97

1. Introduction / Narrative

Many times, we as humans lose focus of the task we are working on. It may be doing
homework, getting groceries, running errands, or even working on work that pays our
quality of life. One of the biggest distractions in this day and age is located directly in our
pockets, the smart phone. Anywhere you look people are texting, calling or playing angry
birds while walking to class, waiting for their doctor’s appointment or even driving. And
this brings us to the motivation behind safe sight, in which we are aiming to reduce
human distraction with completing tasks to make the roads safer for everyday commute.

1.1 Project Background

Humans are unquestionably the smartest beings on the planet. From the dawn of
time there have been nonstop innovations stemming from fire to the world around us
today. However, with such innovation stem new challenges to overcome. Technological
advancements have come to aid humanity to live a more efficient life and spark
innovation. In recent decades, one particular invention came to fruition, the SmartPhone.
The SmartPhone has made communication via the internet possible with the
combination of the cell phone which came decades prior. Being such a monumental
piece of technology, we as a species have become reliant on them, looking at
notifications for communication or browsing the internet for necessary information all at
our fingertips. With such amazing technology came one of our biggest flaws,
distractions. As consumers of smartphones, we are all susceptible to having our
attention diverted by applications designed for our amusement and to focus on areas of
non-importance. Such distractions that stemmed from the smartphone are social media,
messages and games. These distractions get in the way of everyday life as we know it,
continuing to shorten the attention span of the average consumer. Whether it be in a
classroom, at work, cooking dinner or even waiting at the doctor’s office, the smartphone
and its captivating applications have infiltrated our daily lives at a grand scale. One daily
task that it has invaded is commuting.

One of the biggest hassles people face on a day to day basis, often even multiple times
a day, is commuting in their vehicle. In this day and age a normal traffic stop at a red
light makes the general population believe there is enough time to catch up with their
friends and family on popular social media apps like Instagram and Facebook. As quickly
as they may perceive their phone usage at the red light, drivers often feel in a state of
comfort when driving, oftentimes not remembering specific events on the road and just
recalling arriving at their destination. This state of comfort leads directly to a lack of
importance perceived from the driver and then in turn the brain looks for its favorite
source of dopamine: the smartphone and the endless applications it holds.

After spending some time in traffic and looking around at the other drivers at a stop,
nearly all drivers are tinkering on their cell phone whether it's changing a song, sending
a text or responding to an email. When the world’s drivers are constantly distracted from
the traffic around them, this directly leads to a higher cause of accidents between
vehicles and a higher danger to pedestrians. The goal with this product is to reestablish
attention and bring awareness back to safety on the roads. Alongside, big automobile
manufacturers have made efforts to keep the driver engaged while on the road in latest

models. Many of the automotive companies like Hyundai and Tesla for example are
implementing new sensors in their cars to encourage drivers to drive as intended rather
than cause unnecessary delays. Many of these sensors include forward collision
warnings, lane departure warnings, lane centuring assistance, and adaptive cruise
control. Even though these technologies are made for aiding in the safety of the roads,
they do not address the lack of attention that is growing in our society.

What if there were a compact device, no larger than a standard transponder, designed
specifically to help drivers maintain focus on the road? Hence, came the idea of
SafeSight, a device that is able to track traffic light changes, when the car in front of you
is leaving, and take photo documentation of a trip so that drivers can realize how
distracted they can be when commuting.

1.2 Project Motivation / Current Commercial Technologies

The motivation of SafeSight is to develop a device that brings the attention of the
driver back to the roads, aids lack of response times, and helps ensure safety on the
roads for commuters. SafeSight is a tool that leverages the advancements of modern
technology and combines the existing technology in a matter to bring the integrity and
efficiency of the roads back to a higher level than that of the time prior to smartphones.

For SafeSight to truly live up to the ambition we have for it, the team has come together
to develop it in a way that allows for ease of access and compatibility with modern
technologies. For instance we have limited the size of this device to be the size of a
transponder that many individuals already carry in their vehicle for toll purposes. The
technology in the device is also compatible with applications to store data from a
commute to a user’s profile in order to encourage better driving practices whenever the
user returns on the road. According to a recent study, 3,047 fatal crashes were caused
by distractions. This number alone accounts for 8% of all fatal crashes in the United
States. In addition to these fatalities, there were a total of 362,415 people injured from
distracted drivers. Now, not all of these distractions are caused by smartphones, but
rather a vast majority of them are. For this project to really be effective, the device would
combat any distraction, alerting the driver and reducing the number of fatalities we see
from such a preventable occurrence.

As we mentioned earlier, there are some technologies that do in fact help ensure safety
but they do not attack the distractions. Moreover, these technologies are only installed
into vehicles as of late, leaving nearly a century of automotive engineering without safety
features. Our goal is for this device to be able to be implemented on every single vehicle,
offering a much more intuitive and updated experience for every make and model on the
road today. SafeSight will make the commuting process much more efficient and in turn
reduce accidents, commute times, and unexpected obstacles from distracted drivers.

1.3 Project Function

SafeSight will utilize computer vision to classify and make connections between
the driver and their attention towards the road. Cameras will continuously monitor the
driver and outside traffic signals to then alarm the driver if they are not paying attention
to the road. For example, a driver is caught at an intersection waiting for the traffic signal
to switch to green. They suffer from a short attention span and resort to their mobile

device to pass the duration of the red light. This distraction prevents them from properly
reacting to the traffic signal switching to green, causing unnecessary delays and
inefficient flow of traffic. These attention infractions made by the user of the vehicle will
be acted upon by a sound alarm and recorded by the Safe Sight device. Safe Sight, in a
manner, will make its user’s driving more efficient by increasing response time, reducing
error when driving, and maintaining alertness to surroundings. SafeSight will actively
track the user’s performance on the road by documenting how many times the user
committed an attention infraction. The device will communicate with the user by
projecting an audio signal outside of a speaker connecting to the PCB. This audio signal
will serve as a sensory reminder to get off the phone or divert attention back to the road.
Additionally, the computer vision will be trained to classify if the driver in the vehicle is
looking down while the vehicle is in motion, where the device can then register and act
upon an attention infraction. Our team must design a system that is both lightweight and
compact in order for the device to function as anticipated, but also there comes the
hardware necessary to make these ambitions come true.

2. Project Objectives, Requirements, and Goals

SafeSight is a smart in-vehicle monitoring system designed to bring safety and
accountability back to the road by addressing one of the most dangerous habits behind
the wheel—phone usage while driving. The primary function of SafeSight is to detect
when a driver is actively using their phone and immediately alert them with an audible
beep, encouraging them to stay focused on the road. Beyond just reacting to phone
distractions, SafeSight aims to support drivers by monitoring behavior over time,
providing performance feedback, and promoting responsible habits. By reinforcing driver
awareness and reducing distractions, SafeSight contributes to safer roads, fewer
accidents, and more efficient traffic flow.

2.1 Project Objectives

SafeSight will encompass a system that brings back driver integrity and safety to the
traffic environment as a whole. With this comes an increase in efficiency from the traffic
system as well, leading to reduced commute times with reductions in accidents and
injuries caused on the roads. When a commute begins, the system should be started
and acquire traffic data to give a numerical representation of a driver. From every traffic
stop, lane merger, and cruising scenario, the SafeSight system will constantly provide
feedback to keep the driver alert. This same system should also detect changes in a
driver’s performance, for example if a driver is appearing to swerve between lane lines,
then the device will suggest taking a break due to restless sleeping habits. If the driver is
taking longer than usual to respond to changes in a traffic light , the device will notify the
driver to focus their attention back on the road. These behaviors can be recognized by
the SafeSight system in order to properly assess the reason for the driver’s lack of
performance.

SafeSight should encompass a system that captures the current state of a driver and
multiple sample points during a journey. This system will then process the world around
the host vehicle and the data collected from the driver’'s performance to assess
recommendations (if any) to the driver on how to be more safe and efficient on the
roads. The system in itself should be able to detect pedestrians, change in traffic light
patterns, stop signs, movement from the host vehicle, and distances from cars ahead
with the help of computer vision algorithms. These algorithms will be tested through the
hardware of the Raspberry Pi and the tests will be deemed successful if it efficiently
identifies the change in traffic light colors where red = stop and green = go. The system
should also correctly sound the auditory signal when the driver is idle for a longer than
anticipated reaction time to a vehicle moving ahead of it. SafeSight should also be able
to identify pedestrians crossing and offer a signal that the driver must come to a stop,
this scenario is also expected at a stop sign.

SafeSight should encompass a system that knows when the driver should be ready to
progress their journey or not. This will require for the system to be able to detect
movement in the vehicle, notify the driver for longer than anticipated stop times.

All of the components of SafeSight should be modular, meaning that each component
should have the ability to be individually tested prior to being integrated to the entire
system. The components of SafeSight should be able to be assembled and should not

be able to be disassembled quickly, as it needs to adhere to conditions of a moving
vehicle and portable. The entire system should be able to fit on the windshield of a
vehicle without obstructing the driver’s view.

SafeSight is currently a self-funded project, and with that comes the ambition to make
sure it is cost effective for someone to replicate themselves if another engineer found
interest in doing so. For the lack of sponsorship, the team has an aim to make this
device for under $300, so that each member does not contribute more than $100. In the
scenario where significant changes are needed, the budget shall be adjusted
accordingly.

2.2 Goals

< SafeSight Goals:
> Basic

m Maintain drivers attention to the road at all times while the vehicle
is in motion by setting off an alarm if the driver deviates their
attention from the road. CV will be trained to classify if a driver is
looking at the road or looking down (at their phone).

m Analyze common traffic lights and alert the driver if they are not
following them properly. Train CV to classify, depict the contours,
and differentiate colors of common traffic lights.

m Establish connectivity with all components of the final product:
PCB and cameras.

m Train CV and analyze/stream video at 15-30 frames per second

m Using an established UART connection with the raspberry pi.
Receive inputs from the computer vision indicating attention
infractions and send an output signal to a speaker connected to
the PCB board to alarm the driver.

m Read register values from the inertial sensor to dictate whether the
car is in motion or at a stop.

> Advanced

m Develop an application that will pair with the device to pull driver
data that is collected along trips. For example, an application on a
user's phone will keep a tally and download pictures of attention
infractions that the user makes.

m Take pictures using the cameras and stream video to the
application for it to be accessed by the user.

m Implement interrupt service routines to have the MCU operate in a
low-power mode to conserve energy. MCU will be interrupted by
an attention infraction and then alarm the driver of the vehicle by
outputting an alarm signal to a speaker.

> Stretch

m Create a pre-collision alarm for the driver to notify them of
imminent danger on the roadway. Utilize CV in a fast paced
environment to depict the speed of incoming objects relative to the
vehicle. Then, make a decision to alert the driver to react if they
have not been responsive to their surroundings.

2.3 Requirement Specifications and Constraints

The previous sections in this report have described the ambitions and concepts
encompassing SafeSight. In order to bring these ambitions into fruition, there are a
certain amount of required specifications we must adhere to both hardware and software
based. These requirements are what the SafeSight team believes are necessary to bring
the project to its fullest potential. Let these requirements serve as a meeting ground for
the members of this team and the advisors to all understand the goals and aspirations
for what this project will be able to accomplish.

Initially, the first constraint that comes to mind with a compact mounted design is power.
How will we power a raspberry pi computer and MCU executing real-time processing
tasks including computer vision? Well, first we need to calculate roughly how much
power in watts per hour will our execution of safesight require. Below are the average
power requirements for the raspberry pi and ESP32 running at various demands.

ESP-32 MCU
Raspberry Pi4 B

Idle 540 mA (2.7 W)
ab -n 188 -c 1@ (uncached) 1010 mA (5.1W)
400% CPU load (stress --cpu 4) 1280 mA (6.4 W)
Power mode Description Power Consumption
Wi-Fi Tx packet

. Please refer to
Active (RF working) WI-FI/BT Tx paciet

WI-FI/ET B and listening

leble S-4 for detals.

Dual-core chipfs) 30 ma ~ B8 ma
Simgle-core chip{s) | N/A

The CPU s = Dual-core chipfs) Z7 mA ~ 44 mA
Modem-sleep 160 MHz - - —
powened Up. Single-core chip{s) | 27 mA ~ 34 mA
Dual-core chipfs) 20 mi ~ 31 ma,

240 MHz

Mormal speed: 80 MHzZ

Simgle-core chip{s) | 20 m& ~ 25 mA

Light-sheep - 0.8 ma
The ULP coprocesaod ks powerad up. 150 il
Deep-slesp ULP eensor-monitared pattern 100 b @19 duty
RTC timer + RTC memary 0 A
Hibernation RTC timer anky 5 ph
Paower oft CHIP_PU is set to low kevel, the chip is powered down. 1 b

Table 5-4. Gurrent Consumption Depending on RF Modes

Work Mode Min Typ Max | Unit
Tran=mit B0 11k, DSSE 1 Mbps, POUT = +18.5 dBm - 240 — | ma
Tranzmit BOZ11g, OFDM 54 Mbps, POUT = +18 dBm - 180 — | ma
Tran=mit BOZ11n, OF DM BMCST, POUT = +14 dBm - 180 - | mA
Receive 822 Nb’g/n — | 85 ~100 — | ma
Iransmit BT/BLE, POUT = O dBm — 130 — | ma
Receie BI/BLE — | &5~ 100 — | m&

We need to choose the values that assume we are running every component in its most
energy demanding mode so that when we choose our power source, all processes will
be properly powered to assure performance of all components. Using the formulas below
we can calculate our most demanding average power in watts per hour.

Average Power Consumption(Watts Per Hour) = V(Voltage) * I(Current in mAh)
Total Power Supply (Watts)/ Average Power Consumption (Watts per Hour) = Operational Hours

The values chosen for our raspberry pi will be 5V and 1280mA, demanding 6.4 watts per
hour. Additionally, our ESP-32 will demand 3.3V and 240mA which makes about 0.8
watts per hour. Finally, we can calculate our average power consumption and
operational hours. If Battery powered, we will assume a 5V 10000mAh battery.

Total Power Supply = 5*10 = 50 Watts Average Power Consumption = 7.2
Watts/Hour
Operational Hours = 50/7.2 = 7 Hours

Now that we have documentation on the requirements and performance of powering our
product, we can conclude that a battery powered method of power delivery will not
provide convenient usage of the product for the user due to frequent recharges needed
from driving, roughly every 7 hours. However, our solution to this is to use the 12V
charger port in the vehicle with a voltage converter circuit to properly power the device
with no worry of any recharge.The wired design will drop our product in size and weight.
Furthermore, Most car charger ports run 12V with a 10A fuse which provides 120 Watts
of power! This is more than enough power that our device needs and will be the power
source tapped into by our Safe Sight product.

2.4 Engineering Specifications

Specifications for each of the project’s subsystems are listed below:

Model ifications:
- The device cannot be bigger than 8.5 inches x 7 inches to abide by federal
highway safety regulations
- Should weigh less than 900 grams
- Should power on the rest of the system when the 12V source is connected to the
device
MCU Specifications:
- Properly receives and transmits signals from both the Raspberry Pi and the
Inertial sensor around the rest of the system with the base UART rate of 5 Mbps.
- Send alarm signals to respective piezo electric buzzers when an intention
infraction is committed (<100ms).
RaspberryPi Specifications:
- Properly utilizes the CV algorithms to identify traffic distances and changes at a
processing power of 2.4GHz.
- Captures and stores the instances when a driver is distracted which then
establishes conditions for other components in the system.

- Executes the two cameras on their respective CV algorithms with no
computational overlap.

CV Algorithm:

- ldentifies the change in traffic conditions, Green/Yellow/Red light changes.
- Color detection through color thresholding
- Detects distracted driver posture in real-time. Detection < 200ms.

Inertial Sensor Specification:

- Accurately collect data on the acceleration/deceleration of a vehicle with 80%

accuracy.
Software Specifications:

- Should be able to power on immediately when plugged into the 12V source.

Table 2.4.1 Hardware Component Specifications

Component(s)

Parameter

Specification

Application

Distraction tracking / Photo
View

Tracks number of
distractions and shows
photos taken

Cameras, raspberry Pi,
sensors

Pedestrian, light and
motion detection

CV algorithms for color
thresholding, size change
analysis, and face
orientation recognition.

Piezoelectric Buzzer

Beep sound/Action Delay

102dB +/- 3dB, 600 Hz to
10kHz

Power

Cigarette lighter adapter

12V

Microcontroller ESP 32

Performs calculations and
communicates with Pi.
Transmits data to the
application host device.

Data transfer >= 5Mbs

IC (integrated circuit)

Non-inverting Operational
Amplifier to perform
message signal
amplification.

Gain of range from
50-100mV

Table 2.4.2 Tentative Bill of Materials

Component Quantity Unit Cost

Adafruit BNOO055 (Inertial Sensor) 1 $35
Raspberry Piv5 1 $90
Raspberry Pi HQ Camera 1 $50
Micro SD 1 $12.00
Raspberry Pi camera 1 $35
LED 1 $3
Voltage Regulators 1 $5
ATMega 328P (MCU) 1 $3
PCB Board 1 $30
PCB Speaker 1 $2
Signal Amp I.C 1 $4 $269,

2.5 System Diagram and Visualization

In an effort to bring our ideas to fruition we have drafted a visual representation of both
the hardware and software of the system as a whole. These diagrams highlight not only
the flow of our system but also references the engineers who are taking responsibility for
overseeing the specific components in the system. All of the engineers who are working
on Safesight will make equal contributions on all systems and their subsystems, however
in an effort to diversify the workload and abide by the constraint of time, assignments to
specific areas were made.

Start (Pi turns on)

W Hotspot emitted

T

Pisends data Driver Report:
over HTTP from Previous 10 Trips:
its IP via JSON

Delay (5 sec)

—>

Pi sends photos
over HTTP from

Photo Gallery

WP e

its IP via JSON
array

Read JSON to

total trips and
distractions to

ive safety score
Delay (5 sec) |~ g v

Your Driving Profile:

No
Is the Pi 4—_|
“~._powered off?
Yes -

9

Table 2.5.1 Software Block Diagram

v

Start

Custom PCB Software

No (Red/Distracted) Is the light green

Yes L

Distracted?

/ Raspberry Pi Software \

User

distracted?

Yes (Green/Distracted)

&the user
—
Detect

Traffic Light
Detection

Vehicle Delay _
Movement? No (1sec) Wait for byte from
¥ ESP
Beep Received Bytei
Notification &
Pedestrian Send Byte to Pi Take Photo & Save
Detected? \ iton Pi
User
\ Distracted?
No
/ Mobile Application \
Legend
Member Assigned to Block: Beep Count Photo View
. - Mahyar Mahtabfar
-Albert Lougedo User Interface J
- Matthew Carvajal K /

Table 2.5.2 Software Block Diagram (2)

10

Table 2.5.3 Hardware Block Diagram
PCB

Ccsl A
B-@
csi ¥
3

- - Mahyar Mahtabfar

- - Albert Lougedo
- - Matthew Carvajal

—

One consideration when designing the project is the needs of the customer. In an effort
to take these needs into the design process we have to analyze the tradeoffs of our
vision with that of the customer, thus a house of quality visuals was made. In the house
of quality we utilized a numerical representation to represent the correlation we deemed
fit for the technical specifications and the requirements made by the customer. At the
roof of the house is our correlation of the technical specifications to each other. This
portion demonstrates the tradeoffs we had to acknowledge outside of the customer’s
needs.

Figure 2.5.4 House of Quality

In the development of the SafeSight driver monitoring system, the House of Quality
serves as a critical tool for aligning user needs with technical design requirements. This
structured matrix helps the team translate essential customer demands—such as
minimizing phone-related distractions, enhancing road safety, and providing real-time
feedback—into concrete engineering actions. By identifying and prioritizing the
relationships between what drivers need and how SafeSight can fulfill those needs, the
House of Quality ensures a user-centered design process. It provides clarity during the
early stages of product development, helping the team focus on features like accurate
phone detection, timely alerts, and reliable behavior monitoring, all while maintaining
usability and driver privacy. Ultimately, the House of Quality guides SafeSight toward

11

delivering a solution that meets both safety standards and real-world driving
expectations.

e ‘Ma: Min | Min lMin Min | Min |Mln |Mir|-
Technical Specifications (How)
H
g 5
% T ¢ g Correlati
House Of Quality £ 5 E orrelations:
E s g % 5 E g £ ++ Strong Positive
§ P H + Positive
£ - - Strong Negative
Z - Negative
Customer Requirements (What) Importance 1 2 3 4 5 6 7 8
1 Size 5 1] olalals]a]ola
2 Weight 2 1]l ol sl als]a]ela
3 Cost 3 1]l 219l 2] 2]a1]s]| 2 . .
4 Ease of Use 5 S R R EE EE Relationships:
5 Power Consumption 1 3 | alalalsa[ala]s Strong=9
& Latency 5 9 | 2|l al e a]a]]a Medium= 3
Weak=1
wn ;S- g .E g
k1 ¥ E 5 o
=% 3 § £ 3 ¢ 3§
I v W n
l || = V323
v
Importance "2a "23 "18 "2 "3 " "xm "n

12

3.Research

In developing SafeSight, our goal was to design a reliable and intelligent system that
enhances driver awareness and promotes road safety. Drawing from the vast pool of
available technological resources and research, we identified and implemented the most
suitable components and methods to ensure the system functions efficiently and
effectively in real-world conditions. To successfully build SafeSight, a variety of skills and
knowledge areas were required, including embedded systems, wireless communication
protocols, programming in Python and C++, and the implementation of safety-focused
logic systems. The research and selections outlined in this section demonstrate how
each component and technology contributes to SafeSight's mission: to assist drivers,
enhance situational awareness, and improve overall traffic safety.

3.1 Technologies

To implement SafeSight successfully, a careful selection and integration of both
hardware and software technologies is needed. Each component was chosen for its
ability to meet the specific requirements of real-time data processing, environmental
sensing, and wireless communication.

This section outlines key technologies that power the SafeSight system, including
comparisons when it comes down to picking our main system, subsystem, MCU, etc.
Understanding these technologies is essential to grasp how this system will operate,
process input, and deliver timely feedback to improve driver safety and awareness.

3.1.1 Raspberry Pi

3.1.1.1 Raspberry Pi vs. Jetson Nano

The Raspberry Pi will be utilized because of its processing power, compact and robust
design, and affordable price point to run the computer vision tasks in our project.
However, how does the Raspberry Pi compare to its competitors? The Raspberry Pi and
Jetson Nano are looked upon as competitors when it comes to application in a computer
vision project requiring real-time object detection and image processing.

3.1.1.2 Availability and Efficiency

The Raspberry Pi, especially the newer models, is more affordable than the Jetson
Nano, consumes less power, comes in a more compact and portable size, and has a
better platform for development due to its popularity on a massive global user base. In
our case, we will require our computer vision model to detect simple objects and classify
between head posture, colors, and contours. These demands do not require the
additional parallel computing power from the Jetson Nano which includes an NVIDIA
Maxwell GPU with 128 CUDA cores. For intensive deep-learning tasks, the Jetson Nano
will perform better when compared to the Raspberry Pi. For our application, since we do
not require the extra computing power that makes Al and machine learning possible,
provided by the Jetson Nano, and need a smaller more efficient design for application,
we decided that the Raspberry Pi is the more ideal fit. When it comes to technology

13

choices to run our required computer vision models in real-time, in a compact efficient
design that our product requires, the Raspberry Pi trumps its competitor for computer
vision tasks in this application.

3.1.1.3 Hardware Accessories

Other than the Raspberry Pi development board that houses the CPU, memory, and all
access ports, there are a few additional accessories we need to consider when meeting
the demands of our Safe Sight project. Many projects involving computer vision tasks will
drive a high demand on the Raspberry Pi, involving complex calculations on image data
that will generate more heat when compared to basic tasks. This calls for one of our
accessories to involve a passive or active cooler so that our Raspberry Pi does not
overheat. Overheating a Raspberry pi will cause it to throttle its CPU in an effort to lower
its overall temperature and heat generation. Furthermore, if this thermal throttling occurs
whilst the Raspberry Pi is actively attempting to run computer vision tasks, it will
negatively affect performance of the Safe Sight product and inevitably result in the
product failing. Additionally, camera accessories and their specifications will be crucial in
managing demands on the Raspberry Pi and its heat generation. The goal with both the
cameras is to have them capture at speeds and qualities that are efficient enough to
prevent thermal throttling and effectively run computer vision tasks in real time.

3.1.1.4 Passive vs. Active Cooling

When it comes to cooling of electronic components there can be two ways: passive or
active. Passive cooling utilizes natural conduction, convection, and radiation to cool off
components. The use of materials and structures that work well dissipating heat to cool
off elements is what passive cooling is all about. For example, passive cooling in small
electronics is most commonly seen as a heat sink with thermal tape sticking it to
components.

Thermal pad

Heat sink

Thermal pad

Heat source

Figure 3.1.1.4.1 Heat Sink

On the other hand, active cooling involves using active components to cool down
electronics. The biggest example of this would be a cooling fan that draws power from

14

the electronics its cooling in an effort to dissipate heat through convection. On bigger
more demanding electronics, water cooling and pumps might be used as another
method of cooling, but for smaller electronics this is not needed.

The method of cooling we have decided to choose to meet our product needs is a mix of
both. The Raspberry Pi active cooler uses a combination of thermal tape, metal heat
sinks, and active cooling fans to effectively dissipate heat and prevent the thermal
throttling effect on its CPU. The Raspberry Pi will begin throttling its CPU at 80°C and
increase the effect once it reaches its maximum temperature of 85°C. Considering that
our Safe Sight product will be running demanding applications and will be located in a
vehicle, we believe that it is only appropriate that we use a combination of the best active
and passive cooling technologies to keep our device at optimal running temperatures.

Figure 3.1.1.4.2 Raspberry Pi Active Cooler

3.1.1.5 Camera Accessory

To achieve a product that can process traffic lights and also the drivers posture we will
require two cameras. The front road-facing camera will need to operate at a higher
resolution than the camera facing our driver. A higher resolution allows for our front
road-facing camera to process contours and objects at further distances due to a greater
image quality. Since our vehicle position on a traffic light stop most times will not be first,
a greater resolution will be required to confirm an accurate interpretation of the traffic
light from our computer vision algorithm.

The camera facing the driver will capture video at a much lower resolution since the

camera will be a set distance at all times from the driver, making it so the camera can be
orientated to have its subject fill in the frame of video capture. Now that the driver makes

15

up most of the frame of capture, a significantly smaller amount of pixels can be utilized to
represent their appearance since they are closer to the camera and their posture
represents most of the capturing frame. Capturing video this way will alleviate stress
from the Raspberry Pi’'s CPU and allow us to utilize more of its computing power to run
the more demanding road-facing computer vision algorithm.

For the driver camera, we have decided to use the UVC USB camera 720p due to its
reliability and image quality.

Figure 3.1.1.5.1 UVC USB Camera

For the traffic camera, we have decided to go with a Logitech - Brio 100 1080p Full HD
Webcam due to its high quality image and the ease of use with its plug-and-play
technology.

Figure 3.1.1.5.2 Logitech - Brio 100 1080p Full HD Webcam

16

3.1.1.6 Raspberry Pi 5 Physical Diagram

The Raspberry Pi 5 physical diagram provides a detailed visual representation of the
board’s layout, including key components, ports, and connectors. This diagram is
essential for understanding the physical structure of the Pi's printed circuit board (PCB),
enabling users and developers to identify component locations, plan hardware
connections, and troubleshoot issues effectively. For projects like SafeSight, where the
Pi serves as the central processing unit for sensors and feedback systems, having a
clear grasp of its physical layout ensures proper integration of peripherals, efficient use
of GPIO pins, and organized wiring. Ultimately, the physical diagram helps bridge the
gap between design and implementation, reducing errors and streamlining the
development process.

Physical specification

85

58

29

35 83—

L o=
TS DHH*
nz.A 13'.3 H O] @ _ 1(1.2 v

045 |- 41 32 34 44 4.1

A " I I -] T
=T =T U T ‘
— — 3

Figure 3.1.1.6.1 Raspberry Pi 5§ Physical Diagram
3.1.2 mmWave C4001 24GHz Human Presence Detection Sensor

When looking at the system we are planning on designing, there are many
factors we must take into consideration before we make an executive decision on the
components at hand. In conjunction with the inertial sensor, which we will be going over
in 3.1.3, a radar was suggested by the advisor in order for us to properly address the
need for a crash prevention system running off of our PCB.

When conducting our research for the right radar to implement into the board there were
many requirements that had to be satisfied. The first major subject was the distance for
which the radar can detect moving objects, but this was accompanied with the hurdle of
detecting objects through a window. Immediately, the prospect of using an ultrasonic
sensor was eliminated. Since the ultrasonic sensor functions by emitting high-frequency

17

sound waves out from the emitter and waits for the waves to bounce back, a windshield
will directly send the ultrasonic waves back to the receiver of the sensor. This reflection
from the windshield will prevent the waves from reaching any object beyond the glass.
The glass in itself has a specific acoustic impedance compared to air, this mismatch in
impedance causes most of the sound energy to be reflected at the air-glass interface.
This hurdle left us with options such as an optical sensor, Lidar, and camera-based
systems. Due to the subsystem of the raspberry pi loading all of the CV conditioning we
are throwing at it, the camera based system was not in the picture as we are avoiding
the use of a third algorithm for distance detection, thus came into question the Lidar. The
Lidar is a sensor that detects light, often working through glass. While a Lidar may seem
like the solution to finding the distance of objects ahead of the host vehicle, one big
consideration was the reflection/ refraction of light that the windshield glass will reflect on
the lasers used from the Lidar. This refraction can cause reduced signal strength while
making an effort to reach objects beyond the glass and potential false readings from
reflections. Another fault in the Lidar system is that the signal must pass through the
windshield twice, once out and another returning. When taking into account robustness
of the system we are trying to engineer, having these scenarios of increased margin of
error has convinced the research to look at other options. Thus, we have inevitably
turned to the radar.

The radar, as a broad technology, serves to identify the presence of objects, determining
distance to said object, and thanks to the doppler effect, measures velocity. One
functionality we will be utilizing the radar for is collision avoidance, in order to warn the
driver using the safesight device of impending impact. Many modern vehicles
incorporate radars within their automotive safety system, and these radars have
standards we took into consideration when looking for the right radar to implement.
Based on the specifications used in the industry, the radars used in these vehicles utilize
a frequency band of 77-81 GHz, range capabilities of 1-30 meters, and about 15W for
power. These radars utilize advanced signal processing for object detection and these
signal processing techniques help with all weather performance which is one thing we
have to take into account as well. The radar we have found is the DFRobot C4001
millimeter-wave presence sensor. This sensor is capable of emitting a 24GHz
wavelength signal with a range of 25 meters.

Figure 3.1.2.1 DFRobot C4001 Radar

C4001 mm\Wave Presence*
Sensor 25m

18

The differences between the mm- wave presence and the infrared sensor are detailed in
the following chart:

Figure 3.1.2.2 mm-wave sensor vs Infrared Sensor Comparison

Millimeter-wave Presence Sensor Infrared Sensor
Sensing Principle TOF radar principle + Doppler radar sensing Pyroelectric infrared sensing principle (passive
principle radiation)
(active detection)
Motion Sensitivity Can detect presence, slight movement, and motion| Can only detect motion and close-range slight movement
of human body of human body
Sensing Range Can be adjusted to different sensing distances Sensing range cannot be adjusted
Environmental Temperature Not affected by environmental temperature Sensitivity decreases when temperature is close to
Impact human body temperature
Application Environment |Not affected by heat sources, light sources, air Susceptible to heat sources and air flow
flow
Penetration Ability Can penetrate fabrics, plastics, glass, and other| Can only penetrate some transparent plastics
insulating materials
Distance Measurement Yes No
Support

We decided to compare the functionality as justification for the reasoning of choosing the
millimeter wave sensing technology. Since we are implementing this radar for distance
detection for a short term alarm with the ambitions to implement a safety crash collision
notification, and to sense vehicles moving ahead of the car hosting the device. The 25m
distance is more than efficient for our uses paired with a speed measurement range of
0.1 to 10m per second. One other aspect of this radar that makes this system as robust
as we would like is that the radar itself is unaffected by snow, haze, temperature,
humidity, dust, and light. Ensuring that the radar will be able to withstand weather
conditions beyond the windshield.

<26, 00mm—————>
e S

il -
oS Bz

00000000+,

= =
= =
= =
= =
= =

o S 2
o 0ooooooo
oo

I mnEm LS
| mmWave |

30. 00mm

OTX

5
5 % 3
000)

HO 08858

o
b el e 3
5.92mm 2.54mm*4 5.92mm

<—22. 00mp————>

wwoo *Z
(
o] VIN
- GND

Figure 3.1.2.3 Dimension Layout for C4001 mmWave Sensor

19

Embedded in this radar we have chosen is the Frequency Modulated Continuous Wave
(FMCW) radar technology. Some notes to mention on this technology are the
advantages of simultaneous range and velocity measurement, superior range resolution,
and extended detection range. With the simultaneous range and velocity measurement,
the advantages of measuring both variables can lead to the implementation of our
equations for crash detection and other notifications to the driver of the vehicle. For
example, the measured vectors will be labeled as two subcomponents variables to the
whole system, where we will introduce feedback in the system in order to measure
constant distance recordings of a vehicle in front of the host vehicle. This will then
compare the values of our ideal distance, being at maximum range of the radar’s
constraints, to the actual distance recorded. This feedback will then apply the data to the
system where velocity and distance from collision are taken into account. From the
FMCW, this can be seamless with simple algebra ringing a notification to the user.

The FMCW’s range resolution implements a frequency modulation technique known as
the triangular frequency. This modulation pattern involves both the increasing and
decreasing frequency linearly, creating a triangular waveform. This separation of the
difference frequency from the doppler frequency makes it useful for simultaneous range
and velocity measurements to be carried out effectively as compared to the application
of an ultrasonic sensor. This modulation technique is crucial for crash detection systems
as it provides a comprehensive understanding of the surrounding vehicles’ positions and
movements. As that is stated, one of the biggest challenges in crash detection is the
ability to distinguish doppler shift and frequency shift, and this FMCW technology’s
inclusion of the triangular modulation enables better discrimination between stationary
and moving objects, proving vital for accurately identifying potential collision risks in a
dynamic traffic environment. In the talks of the traffic environment there are also a
variety of different conditions that require a robust system. With robustness, there are
multiple complex, uncontrollable factors that dictate the system to respond effectively
and one of these factors is the ever changing conditions such as weather and lighting.
The versatility and integration offered by the FMCW'’s triangular modulation allows for an
increase in reliability in order to overcome these various conditions that are ever so
changing, improving the reliability and robustness of the system as a whole. By
leveraging these benefits triangular modulation in the FMCW radar significantly
enhances the capabilities of crash detection systems in cars, and being able to get this
technology to operate on a portable system such as the safesight will be ideal for the
system we plan to implement.

Another major aspect as to why we chose this radar as stated before is the distance for
which the FMCW is capable of detecting. FMCW radars can utilize large bandwidths on
relatively small hardware, allowing the system of safesight to detect preventable
accidents in a traffic environment. Outside of the frequency modulation we went in depth
for, there are multiple signal processing techniques used within the FMCW that allow for
this system such as the beat frequency analysis, fast fourier transform, and the use of
advanced algorithms. Beat frequency analysis is a crucial technique used in FMCW
radar systems as it is used to determine the range and velocity of targets. This analysis
involves measuring the frequency difference between the transmitted and received radar
signals, the delta (difference) is the beat frequency and it is directly proportional to the
target’s distance and relative velocity. The received signal is mixed with a portion of the
transmitted signal in the radar’s receiver which then produces a signal with a frequency
equal to the difference between the transmitted and received frequencies (beat
frequency). From obtaining the beat frequency, that signal is then converted to the

20

frequency domain using the Fast Fourier transform (FFT). The FFT efficiently converts
the time-domain beat signal into its frequency components as we just stated. This
transformation allows the radar to identify multiple targets at different ranges
simultaneously. This is accomplished with spectral analysis, which provides a spectrum
of frequencies present in the beat signal. Peak detection in the FFT output corresponds
to potential targets; these peaks represent the beat frequencies. Threshold application is
also applied to the FFT output to distinguish significant peaks from noise, allowing for
focused and important data that is not going to alter the performance of the system.

The FFT algorithm efficiently converts the time-domain beat signal into its frequency
components, allowing the radar to identify multiple targets at different ranges
simultaneously. To detect the threshold, the FFT output is analyzed to find frequency
peaks above a certain threshold which correspond to potential targets. The range
calculation is the result from this complex process and is how we will be implementing
the range calculation into our CV (computer vision) algorithms. The FFT allows for
computational efficiency, multiple target detection and high resolution. To achieve
multiple targets simultaneously there are many algorithms to implement but we will focus
on these two; One algorithm is used here in the FFT processing known as the Cell
Averaging Constant False Alarm Rate (CA-CFAR) algorithm. This algorithm enhances
detection in complex environments by dynamically adjusting detection thresholds based
on local clutter levels, reducing false alarms caused by background variations and
calculates a weighted average of clutter data in reference windows. The Multiple Signal
Classification (MUSIC) algorithm improves target detection and tracking. This is done by
using eigenvalue decomposition of the received signal’'s covariance matrix and
estimating direction of arrival (DOA) of target signals. The MUSIC algorithm in particular
is effective in reducing interference from stationary and moving clutter sources.

On the subject of algorithms, the FMCW radar technology can be effectively
integrated with computer vision algorithms to enhance object detection, tracking, and
classification capabilities. The FMCW radar provides precise range, velocity and angle
information. Computer vision on the other hand, offers rich visual features and object
recognition. Because of these computer vision algorithms using radar data to improve
object localization and tracking, this allows the combination of the two technologies to
coexist in an effort to overcome challenging lighting and weather in a dynamically
changing environment such as traffic. Mask R-CNN and other similar deep learning
models can identify and locate human objects in visual data. The positions of these
detected objects are used to guide the FMCW radar in targeting specific areas for vital
signal extraction. The versatility of the Convolutional Neural Network (CNNs) can be
used to process both the radar and visual data, extracting these complementary features
from each modality. The type of algorithm we will be using will be discussed more in the
RAspberry Pi section of this documentation, where we will address the CV demands in
correlation to the rest of the hardware being used in the system.

Limitations:

In the research for this specific radar technology, there have been many findings
that provide a lot of evidence to support the claim that this radar technology is perfect for
the use we intend to implement on our system. However, alongside this research came
some drawbacks we will have to work to overcome in the talks of this radar. For
example, the radar technology we have mentioned contains limited range and doppler
resolution, hindering the radar’s ability to distinguish closely related objects and detect
vulnerable road users, particularly pedestrians. The goal of identifying pedestrians has

21

been a far-reached goal in itself in order to really execute an effective collision detection
system. The main intended use for this radar is to detect bigger, automobile objects in
the hopes that the driver will be able to react in a reasonable time. In order to accurately
achieve the targeting for these vehicles in traffic and to propagate the signal to the driver,
the problem of insufficient resolution must be addressed as well. Even in the higher
bandwidths, > 4 GHz, the range resolution may not be sufficient for operating some
targets in dense traffic conditions as we see everyday commuting to UCF, stores or
experiences. This requires additional separation in the doppler dimension.

Interference with congested environments. In scenarios with many vehicles operating
radars in the 76-81GHz band, the power from other radars can significantly exceed the
power of echoes from intended targets. This interference can reduce the effective range
of the radar to a fraction of its normal capacity. Alongside this interference comes noise.
This interference from other radar systems can elevate noise levels, potentially drowning
out weak targets as well, meaning that there is a loss on the overall detection rate. This
detection interference can lead to ghost targets as well, leading even to false readings.
With all of these possibilities in the world of target detection, it is imperative for the team
to simulate many different scenarios in an effort to accomplish these hurdles and prove
the system to be robust over these challenging circumstances.

These limitations highlight the need for improved radar technologies at the size and
thresholds that we are aiming to utilize this specific radar, the mmWave C4001 24GHz
Human Presence Detection Sensor. Even though this sensor’s technologies and
interference mitigation techniques can do the job we are tasking it to do, some
modifications can be made in these technologies to enhance the accuracy and reliability
of FMCW radar systems in complex traffic environments. For the sake of this project
however, the technologies will be sufficient for the main goal, some alterations will be
needed for our stretch goals.

3.1.3 Inertial Sensor

In the scenario where a driver remained idle at a traffic stop and they are not the first
driver in line, the system lacked in being efficient in this case. That was until we decided
to implement the inertial sensor. Prior to this decision being made there were many
theoretical approaches to how this problem could be tackled. One of which was
implementing a CV algorithm in the hopes that it can determine the distance of the
vehicle ahead of us in order to let the driver of the host vehicle know that it is time to go.
However effective this may have been, the design lacked complexity and as a result,
relied heavily on the subsystem of the Raspberry Pi. So, with that being said the inertial
sensor found its purpose. One of the major issues with adding an inertial sensor are the
constraints we need in order for the device to be effectively integrated into our system.
Firstly, we need a sensor that is ideal for automobile velocity measurement. This is
because in order to determine the inertia constant of a vehicle that is driving, there
needs to be some sort of temperature threshold and endurance. This is because the
dynamically changing environment of traffic can be ever changing from location, time of
day, amount of cars around, etc. Being that the environment we are used to is in Florida,
this temperature endearment is crucial as we need a sensor that can withstand
temperatures of a car as it gets hotter when the car is idle and off. Another constraint is
the sensor’s ability to be compatible with the ESP32 and can adapt to UART
communication to remain consistent with the rest of the hardware in the system as

22

displayed in the hardware diagram earlier in this document. And finally, the last two
constraints we demanded to meet were affordability, and compact sizing.

Table 3.1.3.1 Inertial sensor comparison

Feature MPU-6050
InvenSense
(now part of

Manufacturer TDK)
6 (3-axis
accelerometer,
3-axis

Axes gyroscope)
+250, 500,

Gyroscope +1000, £2000

Range °ls

Accelerometer £2g, +4g, 8¢,

Range +169

Magnetometer No

Digital Motion

Processor

(DMP) Yes (6-axis)

Interface [2C

Operating

Voltage 2.5V to 3.6V
4x4%x0.9 mm

Package Size QFN
End of Life
(EOL); replaced
by

Status ICM-42670-P
- Integrated
16-bit ADCs-
External
magnetometer

Notes interface

MPU-9250

InvenSense
(now part of
TDK)

9 (3-axis

accelerometer,

3-axis
gyroscope,
3-axis

magnetometer)

+250, £500,

+1000, £2000

°ls

129, +4q9, £8q,

+169

Yes

Yes (9-axis)
12C, SPI

2.4V to 3.6V

3x3x1 mm
QFN

Obsolete
- Integrated

16-bit ADCs-

Improved

performance

over
MPU-6050-
Integrated

magnetometer

23

ICM-20948

InvenSense
(now part of
TDK)

9 (3-axis
accelerometer,
3-axis
gyroscope,
3-axis

LSM6DS3

STMicroelectro
nics

6 (3-axis
accelerometer,
3-axis

magnetometer) gyroscope)

+250, +500,
+1000, +2000
°ls

129, +49, 8¢,
+169

Yes

Yes (9-axis)
12C, SPI

1.71V to 3.6V

3x3x1 mm
QFN

Active

- Integrated
16-bit ADCs-
Lower power
consumption-
Enhanced
features over
MPU-9250

+125, +250,
+500, +1000,
+2000 °/s

129, t49, 8¢,
+169g

No

No
I2C, SPI

1.71V to 3.6V

3x3x0.9 mm
LGA

Active

- Integrated
16-bit ADCs-
Low power
features-
Pedometer
functions

Many different sensors were able to work for the demands we needed, at one point the
team was considering a sensor optimized for the functionality of a smartphone or other
portable electronic device. This was a step in the right approach as our system was to be
idealized inside of a small component that is transferable from motor vehicle to motor
vehicle, but it did not meet the compatibility of UART, cost, or physical constraints for the
dynamic environment as we mentioned earlier. Thus we went ahead to find another
alternative, the MPU-6050 Accelerometer and Gyroscope. The MPU-6050
Accelerometer and Gyroscope features a 3-axis accelerometer and 3-axis horoscope.
These two additives to the hardware are efficient in measuring acceleration, angular
velocity, and temperature. The sensor also communicates via 12C, but it can be adapted
to UART using additional components. Since the ESP32 is the microcontroller serving
the whole system, it is important that our components are compatible with that
microcontroller. In the efforts to ensure that the sensor we finalized was going to be
ideal, we had to take into consideration physical constraints, power, and introducing
other complexities. Now the limitation of the MPU-6050 being the absence of UART
functionality and absence of a built-in velocity calculation (resulting in an integration of
acceleration data to estimate velocity) caused the choice of the sensor to be this
MPU-6050. The main communication protocol being the 12C offloads the UART pins on
the ESP32. This is ideal as we have the radar and the Raspberry pi, as aforementioned,
already utilizing the UART pins.

3.1.3.1 MPU-6050

The MPU-6050 inertial sensor is an ideal inertial sensor for detecting movement
in a device such as the safesight because of key features and advantages over other
sensors. First, the MPU has various degrees of freedom (6) with the integration of a
3-axis accelerometer and a 3-axis gyroscope, enabling it to measure both linear
acceleration and angular velocity. This combination provides a comprehensive
formulation for motion data, which is what we need in order to track the motion of an
automobile efficiently. The sensor’s 16-bit ADC for high resolution measurements
ensures precision in regard to detection of motion and orientation. This offers
configurable sensitivity ranges for both the accelerometer (+2g to +16g) and gyroscope
(£250°/s to +£2000°/s), allowing adaptation to varying dynamics of a moving car. The
compact size of this sensor is also a very needed constraint that it meets. The
dimensions of just 25 x 20 x 7 mm and low power requirements allow the sensor to fit
and operate with fatal constraints. Alongside the use of the ESP32 microcontroller we
have chosen for this hardware, the MPU-6050 utilizes a 12C communication interface.
This is ideal given that we will be communicating to the ESP32 as we will be
communicating through the Arduino interface. This allows not only for the software to
smoothly communicate but also for the implementation on the hardware as a whole. The
ESP32 has only a specific number of pins to communicate with UART, which is already
ideal for the Raspberry Pi’s integration for the system. The freedom of using 12C allows
for such hardware, like the MPU-6050 to be implemented. And finally, the MPU has
“shock tolerance” which means it can handle the vibrations of a car moving through
traffic (up to 10,000 g), making it robust enough to handle vibrations and impacts in such
a dynamic traffic environment.

Figure 3.1.3.1.1 MPU-6050

24

From the visualization provided above, there are specific pinouts shown and hence this
section of the document will go in depth on the functionality behind every pin. The VCC
and GND pins supply the input voltage and the grounding nodes, respectively. Since this
sensor allows for an activation voltage of 3.3V-5V, this makes it ideal for the sensor to be
implemented given that the ESP32 provides a 3.3V pin for the rest of the circuit board,
allowing utilization of the pin to provide the 3.3V to a node for all 3.3V components. The
main connection and pins we will be doing work on are the SCL, SDA, and INT pins.
Here in the SCL pin we will be utilizing the 12C communication to provide clock pulses
and to establish a connection to the microcontroller’s SCL pin. This will enable
synchronizing data transfer between the MPU-6050 and the microcontroller. The SDA
pin will connect the SDA pins between the sensor and the microcontroller, allowing for
bidirectional data exchange between the two components. For the INT (interrupt) pin,
this pin generates an interrupt signal when new sensor data is available. This pin is
useful for our application because it allows for the real time data processing without
constant polling, allowing the stress of processing power to be brought down.

25

Top View

Q
A A e A
6 8 ¢ 8 & o
< < H <
24 123 (122||21|(20||19
CLKIN | 1 ® 18 | GND
NC| 2 17 | NC
NC| 3 16 | NC
MPU-6050
NC | 4 15 I NC
NC| 5 14 I NC
AUX DA 6 13 y VDD
7 8|9 |[10][11]]12
> < » A N 3
4 o
e o g ©

Figure 3.1.3.1.2 MPU-6050 sensor pinout

3.1.3.2 Sensor Limitations

Initially in this section we went over other possible sensors, why they were not a good fit
and why the MPU-6050 was the better sensor overall for our application. However, it is
also important to note that the MPU-6050 also has its drawbacks. For example, the
MPU-6050 has limited accuracy and reliability. The sensor can produce some unreliable
readings during rapid or harsh environments. Such changes in pitch or angle may initially
result in incorrect outputs before stabilizing which can be problematic in a very intense
traffic scene. While we did mention the robustness to shock earlier as a reason for our
decision, the sensor struggles with vibrations over 10,000 g. This can lead to erratic
readings or clipped values, meaning that we would need to find a way to work around
that in order to properly perform data acquisition. On the subject of high G forces, it is
also important to note that there is a clipping of the forces when the G force is +/- 16g.
This can prove to be insufficient for detecting extreme impacts or crashes. This would
have to put the responsibility of the crash detection into the CV or the radar to detect
when objects have collided with the vehicle in order to implement crash detection.

26

Working with 12C is a must with the expected usage of the UART pins for the
microcontroller being taken, meaning we have a constraint on what sensors we can
implement due to the CV module. Being inl2c communication, the data transfer rate is
slower than other communication protocols such as SPI-based sensors. This limits its
ability to handle high-speed applications requiring faster sampling rates if the
environment is too much for the sensor. The 12C communication is not robust over long
distances over 1 meter without additional measures like shielding wires and lowering
pull-up resistor values, this can lead to complications in the integration for our system if
we alter the dimensional constraints.

The MPU-6050 is also prone to noise and requires careful calibration to achieve
accurate measurements. Without proper calibration, readings can oscillate and deviate
significantly from expected values. This affects the accurate motion tracking which often
requires external libraries for sensor fusion algorithms.

3.1.4 Alarm System

The Alarm System in SafeSight is designed to provide real-time alerts that enhance
driver awareness and safety. This feature actively monitors for signs of driver distraction
or unsafe driving behavior, such as prolonged eye movement away from the road. When
such conditions are detected, the system immediately triggers a visual and/or auditory
alarm to notify the driver and prompt corrective action. The goal of this system is to
reduce the risk of accidents by keeping the driver engaged and attentive during each
trip. This proactive alert mechanism is a key component in delivering a safer and smarter
driving experience with SafeSight.

3.1.4.1 Speaker and Amplifier

For a sound to be replicated at any time by electronics, a digital sample of the sound
signal needs to be stored and then converted, on demand, as an analog signal to then
be heard through a speaker. The conversion process from digital signal to analog signal
is in need of amplification after conversion. Now, the basis and need for amplification is
to take a weak electrical signal and increase its strength, allowing this stronger signal to
be sent to the speakers and produce a loud vibration sound to be heard clearly through
the speaker cones.

3.1.4.2 ESP 32 Compatibility

The ESP 32 includes two 8-bit DAC channels, which can be used to produce more
complex audio output. These DAC channels are hardwired to specific GPIO pins and
utilize the reference voltage as output (3.3V). Now, DAC speakers driven by the ESP32
provide more flexibility with sound application. However, the 8-bit resolution provides
only 256 discrete voltage levels which is considerably less than CD quality’s 16-bit
resolution (65,536 voltage levels). This means that distortion will be heard at some levels
amongst the signal due to insufficient voltage levels to represent the overall signal. In
addition, amplification will be required when utilizing an ESP32’s DAC due to its low
signal strength not being able to drive most speakers effectively. This additional
hardware adds more complexity and significantly increases power consumption. For
implementation that requires diverse audio feedback with a range of tones and volumes,

27

DAC driven speakers are perfect for providing this versatility with sound, being able to
create alarm sounds, voice instructions, and pleasant tones.

3.1.4.3 Piezo Electric Buzzer

The term “piezoelectric” derives from the Greek word “piezein” which means to
“squeeze”. This terminology directly reflects the fundamental principles that these
devices operate upon. When certain materials are mechanically stressed, they will
generate an electric charge. Similarly, when the same materials are energized, they will
deform. Piezoelectric material usually consists of ceramics like lead zirconate titanate or
lead magnesium niobate. When these materials receive electrical signals, they transfer
the energy into mechanical movement at remarkable efficiency and speed, making them
ideal for sound generation and application. Piezoelectric buzzers utilize DC to create a
piezoelectric effect that creates vibration sound. The buzzer consists of a
multi-resonator, piezoelectric plate, impedance matcher, resonance box, and a housing.

3.1.4.4 ESP32 Compatibility

Piezoelectric buzzers are fully compatible with MCUs, especially the ESP32. Coming in
passive and active configurations, piezoelectric buzzers are simple in their hardware
configuration. Only having two leads and either requiring a simple DC input where the
internal oscillator converts this signal to alternating current. Furthermore, the passive
configuration requires an oscillating signal at the input provided from the MCU, allowing
for different tones to be created instead of just changing voltage for volume in dB.
Whether using active buzzers for plug-and-play simplicity or passive buzzers for greater
control over sound characteristics, these components offer valuable audio feedback
capabilities for a wide range of electronic projects. Understanding the principles,
electrical characteristics, and implementation considerations of piezoelectric buzzers
enables engineers and hobbyists to effectively incorporate these components into their
designs, creating everything from simple notification systems to sophisticated audio
interfaces. As electronic devices continue to permeate our daily lives, the humble
piezoelectric buzzer remains a critical component for bridging the gap between digital
systems and human perception.

3.1.5MCU

When it comes to picking the right microcontroller, there are many things that need to be
considered. Questions arise such as: “What is the price of the MCU?”, “How much power
does it consume?” or “Is this MCU even compatible with my system?”. These are all very
important questions that must be answered when picking the right microcontroller for
your project. Below, some, if not, all of the questions will be answered so that this project
can have the perfect MCU that will accomplish all of our tasks.

3.1.5.1 ESP32

The ESP32 is a popular and versatile system-on-chip microcontroller that offers a range
of features suitable for many different loT and embedded systems projects that was
developed by Espressif Systems in September 2016. This MCU contains a Tensilica
Xtensa LX6 32-bit dual-core processor with a clock speed up to 240 MHz. This

28

processor can provide enough processing power for the most demanding applications.
In regards to memory, it holds 4 MB of flash memory with 520 KB of RAM. It has the
most amount of memory compared to the rest of the microcontrollers that are going to be
discussed. This will allow it to support complex tasks with large amounts of data. One of
its key advantages is built-in Wi-Fi and Bluetooth connectivity, enabling seamless
wireless communication for 10T applications. Additionally, the ESP32 has a wide variety
of GPIO pins, analog-to-digital converters, digital-to-analog converters, pulse-width
modulation, 12C, SPI, UART, and capacitive touch sensors, making it highly adaptable
for different types of projects.

The values of C1 and C2 vary with
the selection of the crystal.

The value of R2 varies with the actual
PCB board. The initial value could be
nnnnn m.

1007
VDD33 o

=1
SYRIA YR

uuuuuuu

S5 Sy
i

The values of C15, L4 and C14
vary with the actual PCB board
NC: No component.

»»»»»»»

PSRAM_CLK: SCKICLK or GPIO17

Figure 3.1.5.1.1 ESP-32 Schematic for applicational use

Thanks to its high processing power, wireless connectivity, and wonderful energy
efficiency, the ESP32 is well suited for this project due to its ability to enter low power
modes and being able to operate on battery power for extended periods, making it an
excellent choice for remote monitoring systems such as Safe Sight. The ESP32 is
compatible with a variety of operating systems and development platforms. These
platforms include Arduino IDE since it is probably the most widely supported MCU in the
Arduino community. It allows users to program in the common Arduino C++ framework
with the help of the ESP32 Arduino Core. It can also handle being developed on Linux,
MacOS, and Windows operating systems as well. Making it the perfect MCU for all
developers, no matter their choice of operating system. The creator of the ESP32,
Espressif Systems, has their own software called Espressif IDF. It is the official
development framework from Espressif, offering low level control and optimization for
advanced projects. It is best suited for developers who need to build firmware from
scratch while having full control over the hardware interactions. Therefore, the
combination of affordability, robust performance, capability, and having such a strong
developer community, makes the ESP32 a go-to decision for most projects.

29

Figure 3.1.5.1.2 ESP32 Microcontroller

3.1.5.2 Raspberry Pi Pico

The Raspberry Pi Pico is a versatile and low-cost microcontroller board developed by
Raspberry Pi in January 2021. It is Raspberry Pi’s first board based upon a single
microcontroller chip. It has a dual-core ARM RP2040 processor that runs up to 133 MHz
with 264 KB of RAM and 2 MB of on-board flash memory. You can imagine the Pico as a
smaller version of the Raspberry Pi, even though it is similar to the ESP32, as it
implements much of the same features as the ESP32 including WiFi and Bluetooth
connectivity. However, it does have a different architecture and development ecosystem
than the ESP32. Unlike traditional Raspberry Pi boards, which can run full operating
systems, the Pico is designed more for embedded systems applications and runs
bare-metal code with lightweight runtime environments such as MicroPython and
CircuitPython.

With the price range of $4-$10, the Raspberry Pi Pico comes with a Programmable 1/0
(P10O) system, which allows for efficient handling of custom 1/O protocols without putting
too much strain on the CPU. It has 26 multi-function GPIO Pins, including 3 analog
inputs that support interfaces such as 12C, SPI, UART, PWM, and ADC, making it one of
the most ideal MCU’s for hobbyists. The Raspberry Pi Pico has been optimized for low
power consumption as well, making it a good option for this project due to low power
consumption. It supports an input voltage of 1.8 - 5.5 V of DC power and can operate in
temperatures from -20°C - 85°C, making it a perfect microcontroller for all conditions.

Multiple programming languages are supported on the Raspberry Pi Pico. Languages
such as MicroPython, CircuitPython, C/C++, etc. For beginners, MicroPython is a
popular choice due to its simplicity. With MicroPython, you can develop in a high-level
programming environment, while writing simple, easy to learn code. Unlike C/C++,
MicroPython doesn’t require setting up a development environment and a compiler,
MicroPython allows users to write and execute code interactively using the REPL
(Read-Eval-Print Loop) interface using a serial connection. Beginners and advanced
developers can develop code super efficiently because there is no need for
recompilation. MicroPython also has straightforward syntax for controlling multiple
interfaces (GPIO, 12C, etc.) with built-in support for plenty of peripherals, reducing the
complexity of embedded programming. On the other hand, Circuit Python is a
beginner-friendly version of MicroPython that was designed to simplify programming
microcontrollers such as the Raspberry Pi Pico. One of its most popular features is its

30

drag-and-drop programming model. This allows users to plug up a MCU to the computer,
view it as a USB storage device, and edit their code directly in a text editor, without
needing to compile or run any flash tools. Like MicroPython, CircuitPython includes
built-in libraries and modules that make working with peripherals a breeze. Finally,
developing in C/C++ on a Raspberry Pi Pico offers immense control, efficiency, and
performance compared to high-level languages like MicroPython or CircuitPython. The
Pico's official development environment is C/C++ for the SDK. This provides a long list of
libraries that are able to interact with the Picos different interfaces. Developers use
C/C++ for highly optimized, low-latency applications, which is great for real-time
processing. C/C++ is also very versatile as it can be compiled on various RP2040-based
boards, without the need for modification. This is extremely useful in case the Raspberry
Pi Pico isn't the right board for your project. You can easily move to another
RP2040-based board with more or less features and save time writing new code.
Although C/C++ has a stronger learning curve than Python based languages, it is often
the best choice for projects that prioritize efficiency and deep hardware control.
Therefore, developers love the Raspberry Pi Pico due to its versatility, features, cost and
power consumption.

Figure 3.1.5.2.1 Raspberry Pi Pico Microcontroller

3.1.5.3 STM32 Series

The STM32 microcontrollers have been developers' go-to choice for various electronic
projects for a while. The family of microcontrollers was developed by STMicroelectronics
in 2007. They are based on ARM Cortex-M processors that can range from 24 MHz to
480 MHz. Each MCU from STMicroelectronics consists of ARM processor cores, flash
memory, static RAM, debugging interfaces and various peripherals. In particular, the
STM32H742 MCU features the highest clock speed and memory capacity out of all of
the STM32 series. With a clock speed of 480 MHz and 512 KB of RAM with 2 MB of
flash memory, this MCU is a beast for most embedded systems and electronics projects.
If you are looking for a microcontroller with extreme low-power consumption, the MCUs
with the Cortex-M0/MO+ are perfect for applications that focus on saving power (STM32L
series). Some of the MCUs can operate as low as 1.7 Volts which is perfect for devices
that need to be active for long periods of time. If you are looking for super high
performance out of an MCU, you can look for models with the Cortex-M4/M7. These
models offer high performance with DSP (Digital Signal Processing) and FPU
(Floating-Point Unit) capabilities. Depending on your needs, the STM32 series
microcontrollers can run anywhere from $5-$30, making it one of the more pricer options
on this list.

31

Even though there is a higher price point for the STM32 series microcontrollers, they do
come with an abundance of peripherals, including GPIO Pins, ADC, DAC, PWM, UART,
SPI, 12C, CAN, USB, and Ethernet. Many models also have hardware accelerators for
cryptographic functions, making it perfect for applications that need security. Some
high-end STM32 chips even have graphics acceleration for display based applications.
Like the ESP32, there are even some wireless STM32 options that have Bluetooth as
well, making it suitable for this project. The STM32 series microcontrollers can be used
in a variety of development environments too. These environments include
STM32CubelDE, which is STMicroelectronics official IDE for the STM32 series
microcontrollers. Some businesses on the professional side, use Keil MDK and IAR
Embedded Workbench, which are perfect for embedded system development. Some
hobbyists use Arduino IDE for some STM32 programming because it is user friendly and
compatible with a variety of other microcontrollers. Like the Raspberry Pi Pico, a select
number of STM32 series microcontrollers can be programmed with MicroPython for
efficient development. Therefore, the STM32 microcontrollers offer high flexibility,
performance and extreme power efficiency, making them a go-to choice for beginners,
hobbyists, and advanced developers alike.

Figure 3.1.5.3.1 STM32 Nucleo F411RE Microcontroller

3.1.5.4 Arduino Nano

The Arduino Nano is a compact and versatile microcontroller that was released in 2008
by Arduino. It is based on the ATmega328P processor and offers similar functionality to
the Arduino Uno, but in a more compact form factor. It features a 16 MHz clock speed
with 2 KB of RAM and 32 KB of flash memory. With an operation voltage of 5V, it has a
wider compatibility with most sensors and modules compared to other microcontrollers.
Many of the older sensors, LCDs, and modules (ultrasonic sensors, character displays,
etc.) are designed for 5 V operation which will eliminate the need for modifying the
voltage via level switching when communicating with these interfaces. The Nano is
probably one of the most breadboard friendly boards out there today. This allows
prototyping of components to be super easy. Strictly because most prototyping
components are designed with 5 V in mind. This will make integration of components
easier without the need to voltage regulation during the prototyping process. The Nano
is also one of hobbyists most recommended MCUs right next the ESP32 due to its

32

capability to power more powerful peripherals. This is because with a higher operating
voltage, it can output more current per pin, which other lower-voltage microcontrollers
can’t do.

Since the Arduino Nano has one of the best operating voltages, that means that it can
have more pins. The Nano offers 14 digital /0O pins (input/output), which can support 6
PWM and 8 analog input pins. Unlike the Arduino Uno, the Nano relies on USB power
(via USB Mini-B) rather than a DC power jack. The Nano can be programmed in Arduino
IDE with the came code as other ATmega328P-based boards. The only downside to the
Arduino Nano is that it only supports one UART, one 12C, and one SPI interface. This is
due to its compact size and microcontroller limitations. Compared to other MCUs like the
ESP32 and the STM32, where they support multiple UARTs, 12C, and SPI buses.
However, there are ways to expand its communication capabilities. You can use a
SoftwareSerial that allows for additional UART communication using digital pins. This
method is slower and less reliable than traditional hardware UART. For I12C, you can use
I12C multiplexers that enable multiple 12C buses on a single Nano. For SPI, you can use
SPI Chip Select Management which allows for SPI devices to share the SPI hardware
bus by using different chip select pins, allowing for multiple devices on one SPI interface.

Overall, the Arduino Nano has been deemed one of the best by hobbyists and
developers alike. This is due to its power, compact size, and user friendliness. It has the
same performance as the Arduino Uno with the processor and memory specs, just at a
smaller size. With the cost anywhere between $5-$20 dollars, it makes it one of the
average priced MCUs for small form factor projects. Some companies have even cloned
the Nano to make it even cheaper. While all of this sounds great, the Nano does lack
some /O pins strictly due to its size but, if you need a MCU that is reliable, tiny, and
overall very versatile, the Arduino Nano is for you.

Figure 3.1.5.4.1 Arduino Nano Microcontroller

3.1.5.5 Teensy

The Teensy is a powerful and compact microcontroller development board that has
gained massive popularity among hobbyists and embedded system developers. It was
designed by PJRC in 2008 when the Teensy 1.0 microcontroller was released. The
recent Teensy family (Teensy 4.1) features a ARM Cortex-M7 processor running at a
clock speed of 600 MHz. It also has 1 MB of RAM with 8 MB of flash memory, making it
suitable for a wide range of applications. The Teensy 4.1 features additional features like

33

Ethernet and microSD card support as well. Don’t let its compact size fool you, this
family of MCUs has many capabilities, with numerous GPIO pins and support for various
interfaces including UART, SPI, 12C, CAN, and USB.

One of the Teensy's key strengths is its compatibility with the Arduino IDE through the
Tennsyduino add-on feature. This feature allows for easy and seamless programming in
C/C++. It also operates at a voltage ranging from 3.3 V - 5V, making it super compatible
with a wide range of sensors and peripherals. The Teensy is flexible enough to be used
in high-performance applications requiring maximum clock speed, to low-power
scenarios where conserving energy is top priority. This accessibility, combined with its
high performance, make the Teensy a wonderful choice for projects that involve real-time
systems. Its vibrant community and extensive documentation resources make the
Teensy super appealing to developers, providing ample resources for beginners and
experienced developers to explore its full potential when it comes to embedded systems.

200000 Ogﬁnccogwpnwsoocw
>e o >0 0 A w- el

O L
o G —. ®
W 11 TTHd X s > -
. . . 5
= . 3 s
L)

(I

Figure 3.1.5.5.1 Teensy 4.1 Microcontroller

Clock Flash Communication Operatin
Board Processor Speed RAM p 9 Price
Memory Interfaces Voltage
(Max)
. 520 | I2C, SPI, UART, Wi- . $3 -
ESP32 Tensilica LX6 240 MHz 4 MB KB Fi, Bluetooth 2.2-3.6V $10
Raspbery RP2040 (ARM 264 | 12C, SPI, UART,) $4 -
Pi Pico Cortex-M0) 133 MHz | 2 MB KB WiFi, Bluetooth L8-55V <10
) 512 | SPI, I2C, UART, . $5 -
STM32 ARM Cortex-M 480 MHz 2MB KB USB, Ethernet, CAN 1.7-3.6V $30
Arduino $5 -
Nano ATmega328P 16 MHz 32 KB 2 KB | I2C, SPI, UART 5V $20
Teensy QF;M Cortex- go0 MHz 8 MB 1 MB 12C, SPI, UART 3.3-5V ﬁ%g -

Table 3.1.5.5.1 MCU Comparison Chart

3.1.5.6 Our Selection: ESP32

With all of the Microcontrollers that we compared, our group ended up going with the
ESP32 for our microcontroller of choice. This was because of a multitude of reasons.
The main reason was because it is one of the only MCUs that we researched besides
the Raspberry Pi Pico that offered bluetooth. Bluetooth was essential for us because we
need to connect our Safe Sight device to our app in order to view the data that it is going
to capture. Also, it does offer 520 KB of RAM which is more than capable to handle our

34

Raspberry Pi that will be our secondary system for computer vision. Even though the
speed on the ESP32 isn’t the highest out of all of the other MCUs that were researched,
240 MHz will be perfect for processing the data needed for the sensors and the
information coming from the Raspberry Pi since all the ESP32 is going to handle is our
beep sensor and the radar that is going to be installed on the PCB. Therefore, with
budget in mind, we decided to go with the ESP32 for its overall power and compatibility
with a majority of the other systems in our project.

3.1.6 MCU Communication Protocols For Components

3.1.6.1 UART Communication Protocol

UART stands for Universal Asynchronous Receiver and Transmitter. UART
communication utilizes a serial approach, sending data bits one at a time over a wire.
This protocol is asynchronous, meaning that each device relies on its own internalized
clock speed and configuration to maintain the same baud rate or data transmission
speed for successful communication. All devices that are compatible with UART
communication will have pinouts labeled TX and RX, standing for transmitting and
receiving. These pins will be cross connected to each device meaning that the RX node
on one device will lead to the TX node on another. Additionally, UART communication in
embedded systems is packaged into frames for efficient transmission.

UART 1 UART 2

Figure 3.1.6.1.1 UART Configuration

Now the size of a serial frame being interpreted by a device in communication can vary
(5-8 data bits or 1-2 parity bits). However, each and every frame being sent or received
includes a starting bit, data bits, parity bits, and stop bits. Start bits are first received and
are always 0, they signify the start of incoming data bits and represent a low-voltage
wakeup call for the receiving device that a transmission is incoming. Furthermore, data
bits in a frame are received in the order from least significant bit first to most significant
bit last. Depending on the n amount of bits in the data transmission you will have 2*n
amount of unique transferable characters. Leading after the most significant bit, the
parity bit is set to either check for even or odd parity based on the amount of 1s in the
data transmission. This parity bit is compared with the receiving device’s own parity
calculation bit when reading the data bits and is able to make a decision on whether or
not there is a mismatch error. If the parity bit in transmission does not match the

35

receiving device’s parity bit from deciphering the frame, then a conclusion can be made
that there is a transmission error. Finally, the last bit in the UART communication
protocol frame is the stop bit. Opposite from the start bit, the stop bit represents the end
of transmission and is always a high-voltage signal. The stop bit is 1 and following its
interpretation, the receiver can prepare for the next incoming frame.

Packet

— - -\

0 to 1

1 start 5 to 9 data bits parity L 2

i) stop bits

bits

- s
—

Data Frame

Figure 3.1.6.1.2 UART Frame

When compared to 12C and SPI, UART is slower due to its asynchronous nature but
makes up for this in its universal implementation. Overall, UART communication protocol
is a popular and sought after choice in utilization in embedded systems applications. Its
asynchronous protocol and simple wiring design for communication provides much
needed efficiency and accessibility when debugging and implementing new components
and systems.

3.1.6.2 SPI Communication Protocol

SPI stands for Serial Peripheral Interface and is a synchronous type of data
communication, meaning both devices are coordinating their clock speeds to run at the
same transmission rate. Additionally, SPI is beneficial when compared to 12C or UART
because it allows for data to be transmitted without interruption. Instead of needing to be
packaged into frames and transmitted, data bits in SPI protocol can be transmitted and
received in a continuous stream. The hardware consists of four different nodes for
communication making it more complicated to configure. However, each node is vital in
its contribution to the system.

A system communicating using SPI will have a master and slave dynamic. The master
device will serve as the controlling center in this communication protocol and
communicate with its individual or multiple slave devices. SPI allows for multiple devices
to be connected and communicate with one another and provides a platform for complex
systems to operate as one. In its configuration, SPI consists of MOSI, MISO, SCLK, and
SS/CS nodes. MOSI and MISO lines of communication are for the master device to send
data to the slave (Master Out Slave In) and for the slave to send data back to the master
(Master In Slave Out). SCLK represents the wire for the serial clock synchronization, and
SS/CS is the master select line where the master selects which slave to send data to in
the case of multiple slaves.

36

The clock signal for this type of synchronous communication is generated by the master
device and is connected to each slave to operate upon. The clock signal in SPI can be
modified by using the properties of clock polarity and phase. For example, clock polarity
can be set by the master to allow for communication bit signals to be sampled or
transmitted with the rising or falling edge of the clock cycle. If the system using SPI has
multiple slaves, they will all share the same clock node wired in parallel and have
individual nodes for SS/CS to be individually accessed from the master.
Master Slave 1

N
>

N
>

Slave 2

>
H

Slave 3

E

Figure 3.1.6.2.1 SPI Configuration

Disadvantages of SPI include its complicated implementation and hardware setup,
absence of a method for error checking (parity bits), and configuration only allowing a
single master. However, advantages of SPI include its exceptionally high speed,
full-duplex communication, and no need for start and stop bits.

3.1.6.3 12C Communication Protocol

I2C protocol (pronounced | squared C) stands for inter-integrated circuit, it is a
synchronous protocol which allows for multiple slaves connected to a single master
(similar to SPI) or multiple masters connected to one or multiple slaves. Similar to UART,
I2C sends its data in messages that are then broken down into frames of data. Each
message has an address frame that contains the binary address of the sending device
and a frame containing the actual data. Furthermore, the message also includes start
and stop conditions, read/write bits, and ACK/NACK bits between each data frame.

37

Master Slave
<>
—>

Figure 3.1.6.3.1 12C Configuration

A scenario where a message would be sent from a master to a slave would play out as
such. The master will send a message to another device connected to the SDA line by
first setting the SDA line from high to low voltage and as the start condition for the
message to be sent. Then, the address frame will be sent to single out the specific
device that wants to be communicated with followed by a read/write bit. A read bit sent
means the master will want to pull data from the receiver, and a write bit signifies that
data is being sent to the receiver. After the address frame including the read/write bit is
received by the receiving device, an ACK/NACK bit needs to be sent back to the master
to signify that the data frame was received correctly. Now that a connection has been
established between the two, data has to be sent in 8 bit frames followed by ACK/NACK
bits for confirmation. Finally, when the exchange comes to an end between the two
devices, the stop condition signifies the SDA line changing from low to high voltage.

Message

—_—

Read/ ACK ACK ACK

Start 7 or 10 Bits write |nack| 8 Bits |nack| 8 Bits |Nack| Stop
Bit Bit Bit Bit

—— e

Address Frame
Start Condition Data Frame 1 Data Frame 2 Stop Condition

Figure 3.1.6.3.2 I12C Frame

I2C is widely used in embedded systems for its simple hardware configuration and
welcoming implementation when working with multiple devices at once. Only requiring
two wires and its ability to support multiple slaves and masters in one system makes it a
strong choice in embedded systems projects. Hurdles with using 12C communication
protocol will arise when the message being sent exceeds 8 bits and requires quick
processing/speed. However, 12C is one of the most popular methods for synchronous
communication amongst electronic devices.

3.1.6.4 Summary

38

All of the common embedded systems communication protocols discussed in this
section are excellent choices, each excelling in specific applications depending on the
project’s requirements.

For example, UART (Universal Asynchronous Receiver-Transmitter) is a straightforward
and reliable option when an application demands basic communication with minimal
setup and quick execution. It is particularly well-suited for simple, point-to-point data
transfer scenarios. On the other hand, SPI (Serial Peripheral Interface) surpasses UART
in situations where ultra-fast data transfer between two devices is critical throughout the
application. Its high-speed capabilities make it a preferred choice for projects requiring
rapid and continuous data exchange. Finally, 12C (Inter-Integrated Circuit) stands out as
the ideal protocol when an application involves connecting multiple devices on the same
data line bus to communicate synchronously. This makes it highly effective for systems
with numerous peripherals that need to share a common communication channel
efficiently. Each protocol has its strengths, and selecting the right one depends on the
specific needs and constraints of the project at hand.

>
UART 12C SPI
Universal : :
Full Name Asynchronous Interé:}iigi;atm Se”ﬁ:tisf”agzera]
Receiver/Transmitter
—— Synchronous
Comn‘}umcatlon Asynchronous (Multi-Master, Synchéﬁn?elf; (Full-
ype Multi-Slave) P
Number of Wires 2 (TX, RX) 2 (SDA, SCL) o (MOSIE:’;;ISO' LK,
Clock Signal No Yes Yes
Device iand 7-bit or 10-bit | Through Chip Select (CS)
Identification addresses lines
Data Transfer Configurable baud tgg';gl:ynil:;\ﬁ:n Faster, suitable for high-
Speed rate 4 speed data transfer
data rate
I ial Connecting High-speed data
Genera -purpost_e serial | multiple devices transfer between
Use Cases 5 orfﬁ;rt]i-l: gnéc:v:{c}g to | 08 single bus, microcontrollers and
; flers. Sensors, peripherals such as
S EEPROMS, etc. | displays, SD cards, etc.

Table 3.1.6.4.1 Communication Chart Comparison
3.1.7 Development Environment: Languages and Repositories

In developing SafeSight, we explored a range of programming languages and repository
management tools to determine the most suitable environment for our system.

39

Languages such as C/C++, Java, and Python were considered based on their respective
strengths in embedded systems, cross-platform application development, and rapid
prototyping. Each language offered distinct advantages depending on the component of
this project that was being worked on, whether it involved low-level hardware control or
high-level decision-making logic, we knew what environment to use to make sure our
development constraints were met.

In addition to language considerations, we needed a way to share and keep track of our
code. With that being said, we examined repository platforms such as GitHub and
Bitbucket to support version control, team collaboration, and streamlined development
workflows. These tools play a critical role in managing code across multiple contributors
and maintaining project integrity over time. The following section outlines our evaluation
and final selections for the SafeSight development environment.

3.1.7.1 C/C++

C is a general purpose programming language developed by Dennis Ritchie in the early
1970’s. It was originally created for constructing utilities running on Unix and later used
to re-implement the Unix operating system kernel. C has since become one of the most
widely used programming languages due to its efficiency, portability, and versatility. One
of the main features of C is that it has low-level access to your machine. C provides
direct access to memory and hardware, making it suitable for low-level programming at
the system level. Static typing is also mandatory in C where the variables must be
declared before use, with their respective types stated. C has often been described as a
low-level language just because it is very easy and simple to use. Unlike true low-level
languages like assembly, C offers a higher level of abstraction, making it more of a
“‘middle-level” language in some contexts. Because of this, C does need to be compiled
in order to be translated to assembly and then machine code in order to finally be
executed and run the program. Compared to other languages like Java, C does not have
many object oriented components involved in it. C is rather used more for hardware
development, compared to Java, especially in embedded systems and semiconductor
programming. Over time, C has significantly influenced many modern programming
languages, including C++, Java, and C#. Its syntax and concepts serve as a foundation
for other programming languages which is why some people refer to it as the “mother of
programming languages”.

3.1.7.2 Swift & Swift Ul

Swift is a modern, general purpose programming language that was developed by Apple
Inc. in 2010 for i0OS, macOS, watchOS, and tvOS app development. It was first
introduced in 2014 and has since become a primary language for Apple platform
development. Swift is known for its safety. It was designed with a feature called
optionals, this feature handles null and undefined values without the risk of runtime
crashes. This was designed in order to eliminate entire classes of unsafe code therefore,
reducing risk. Swift offers high performance compared to other C-based languages.
Apple claims that search algorithms in Swift can be up to 2.6 times faster than
Objective-C and up to 8.7 times faster than Python 2.7. Swift also uses a very modern
syntax that results in very clean and well organized code. This allows a programmer to
write less code to perform the same tasks as other languages. Compared to C, Swift
uses Automatic Reference Counting (ARC) to handle memory allocation and

40

deallocation automatically. ARC is a memory management mechanism that
automatically tracks and manages the app’s memory usage. It ensures that objects are
kept in memory as long as they’re needed and released once they are no longer in use.
ARC has a reference counting style. Every instance of a class keeps track of how many
strong references point to it. When a new strong reference is made, the reference count
increases, and when a reference is removed, it is decremented. When the reference
count hits 0, then the object is automatically deallocated, freeing up memory unlike many
other languages where you have to use free() to deallocate memory manually. Since
2015, Swift has become open-source, which has gained a massive community and
ecosystem of developers all around the world.

Swift Ul is a user interface toolkit introduced by Apple in 2019. It allows developers to
design and develop user interfaces for all apple platforms using Swift. Swift Ul uses Swift
as its main programming language. While SwiftUl focuses on the Ul construction, Swift is
used for all aspects of app development, including logic, data handling, and backend
operations. This toolkit brings over Swift's declarative syntax. This allows developers to
state what the user interface should do, making the code more intuitive and easier to
read. SwiftUl offers a real-time preview of your interface as you code, so you don’t have
to build and compile your code each time you want to test, therefore, making the
development process more efficient. With all of the different features Apple offers to their
clients, SwiftUl has support for Dark & Light Mode and Localization just by a simple
toggle. Reducing the amount of code that developers need to write. The only downside
between Swift and SwiftUl is compatibility. Since these frameworks are a part of the
Apple ecosystem, when it comes to Android development, there is little to no
compatibility for application development, the developer would need to seek other
options to develop for all platforms. However, since this project is a prototype, we can
focus on developing for the masses later on after our prototype is complete. Therefore,
these two platforms together provide a powerful toolset for developing applications
across Apple’s ecosystem, offering improved safety, performance, and developer
productivity.

3.1.7.3 Java

Java is a versatile, object-oriented programming language developed by James Gosling
in 1995. It is both a programming language and a software platform that has become
one of the most popular development platforms worldwide. Due to Java’s portability and
versatility, it has been deemed as a “Write Once, Run Anywhere” kind of language.
Since Java is an object-oriented language, it makes it easy to organize and structure
code in classes. Java code can be compiled and ran on any platform with a Java Virtual
Machine on it without the need to recompile. Once the Java code is compiled into
machine code (Java Bytecode), it is then executed on the machine using a JDK (Java
Development Kit). Some key concepts of an object-oriented language like Java are
classes, objects, encapsulation, inheritance, polymorphism, and abstraction. All of these
processes make any project that is developed in Java, reusable, scalable, and easily
collaborable. Reusability is important because it allows users to create an object only
once throughout the project, and reuse it as many times as needed, without having to
rewrite it. Scalability is important because it allows developers to debug easily while
testing individual classes separate from one another. This can make a group project
easy to scale due to everyone being able to test their own class or object without
interfering with other developers' code. Collaboration is important work can be delegated

41

super easily, by giving each developer separate classes and objects, making it easier to
work on. Java is mainly used in Web Development, Android mobile applications,
machine learning, etc. In 2022, Java is still one of the most popular programming
languages, ranking third on the GitHub list. For new developers, Java is super easy to
learn and it is secure so developers don’t have to worry about compromised data. In
conclusion, Java’s combination of simplicity, portability, and robust features have
ensured its continued relevance in the evolving world of programming languages.

3.1.7.4 Python

Python is a high-level, general-purpose programming language that is known for its
simplicity, readability and versatility. It was invented by Guido van Roussum in 1991. It is
typically developers first coding language because it is easy to learn and use. Python
uses English-like syntax and indentation for code blocks, making it more accessible to
beginners. It is also an interpreted language, meaning that Python is executed line by
line, making it easier to debug and test. Developing in Python is also super efficient due
to the fact that Python doesn’t need explicit type declarations. Like Java, Python is also
an object-oriented language and supports object-oriented principles as well. Python is
also a cross platform language that runs on various operating systems with an extensive
standard library that has a comprehensive set of modules and functions that can be
used for web development, Al, data science, software development, etc. Since its
release, Python has a large and very active community that is constantly growing and
finding new ways to utilize and improve. Overall, Python is a very powerful language that
would allow beginners and experienced programmers alike to create strong, robust
applications in the fields of data science, web development, and artificial intelligence.

3.1.7.5 GitHub

GitHub is a cloud-based platform that revolutionizes software development collaboration
and version control. Founded in 2008 by Tom Preston-Werner, Chris Wanstrath, P.J
Hyett, Scott Chacon and later acquired by Microsoft in 2018, GitHub has become the
world’s largest source code host, with over 100 million developers. A GitHub repository
can either be private, public or open-source, making it super accessible to anyone in the
development community. GitHub primarily works using a version control concept.
Meaning, that a person can “clone” a repository to make changes to it either on the
‘main” branch or their own development branch. Once they are done with making
changes, they can then upload those changes and “merge” with the existing repository
to push those changes and test. This process of merging and creating new versions
makes collaboration almost effortless because it allows developers to edit as a group
without stepping all over each other's changes.

The GitHub platform uses Git to help maintain versions of repositories. Git was invented
in 2005 by Linus Torvalds. It was developed to address the needs of managing the Linux
kernel source code, which required a system that could handle large-scale distribution of
software. Git helps keep track of changes to files over time by tracking changes as
“‘Commits”. Commits are recorded snhapshots of the project at a specific point in time.
This is extremely useful because if the project somehow becomes corrupt or the code
gets messed up somehow, you can actually go back to a previous commit to revert the
changes that messed up the project without having to start all over. Some of the benefits
of using Git include but are not limited to speed, data integrity, staging capability and

42

flexibility. Git allows users to organize and stage their changes so that developers can
review them before sending them off to merge with the rest of the project. Developers
can do this efficiently with the commands that Git comes with as well. To ensure data
integrity and safety, Git uses SHA-1 hashes to ensure that data doesn’t become lost or
corrupted. SHA-1 hash is a cryptographic function that creates a 160-bit hash value from
a single input. It was designed by the U.S. National Security Agency in 1995 and has
since become the standard in data security. Overall, using Github is not only secure, it is
also efficient and perfect for all group projects due to its versatility, user-friendliness, and
collaborative potential.

3.1.7.6 Bitbucket

Bitbucket is a cloud-based Git repository system designed by Jesper Nghr as an
independent startup company in 2008 and officially launched in 2010 when it was
acquired by Atlassian. Bitbucket is very similar to GitHub, where it allows a group of
developers to actively work on a software project together. Bitbucket also uses version
control to help control data inside of repositories. The main difference between GitHub
and Bitbucket is that Bitbucket has other softwares like Trello and Jira built into it that
helps developers work more efficiently. Jira helps developers detect bugs easily and
provides suggested fixes to the code in order to make the debugging process more
efficient. Trello makes cards with tasks for the developer that get added to a calendar
that helps tell the group what needs to get done each day. Even though it would make
sense with more features to gravitate towards Bitbucket, it does have a cost of use
which turns users away from it. GitHub is free to use and is mainly used by the public
community to share code and projects with each other while Bitbucket, has been
adopted by many corporations and private developers to help them stay on top of their
tasks on a corporate level. As of 2025, Bitbucket continues to evolve, offering features
like native security tools, premium platform support, and flexible planning tools.

3.1.7.7 Our Selection: C/C++, Swift/SwiftUl, Git/GitHub

Technology Pros Cons

C/C++ - High performance and - Steep learning curve
low-level control - Manual memory
- Widely used in embedded | management
systems - Error-prone and verbose

- Portable across platforms

Swift/SwiftUl - Modern and safe - Limited to Apple
language ecosystems
- Great for iOS/macOS - Smaller community
development compared to others
- SwiftUl enables fast Ul
design

Java - Strong object-oriented - Verbose syntax
support - Slower than C/C++ in

- Cross-platform via JVM some use cases

43

- Large ecosystem and

support

Python - Easy to learn and use - Slower performance
- Rapid development and - Limited for low-level
prototyping hardware interaction

- Vast library support

Git/GitHub - Popular and - Public by default (without
well-documented paid plan)
- Great collaboration tools [- Can be overwhelming for

- GitHub Actions for CI/CD | beginners

Bitbucket - Free private repositories | - Smaller user community
- Integration with Jira and - Fewer integrations
Trello compared to GitHub
- Supports Git and
Mercurial

Table 3.1.7.7.1 Pros and Cons of Development Technologies

When it came down to our development environment, the thing that was most important
for our group was familiarity. We wanted to keep this project as simple as possible with
the resources and technologies that we already knew. The whole purpose of this project
was to put together the knowledge that we have already learned throughout our college
engineering careers. Essentially, we didn't want to have to learn a whole new
programming language or a new repository system when we could have just used one
that we all have used before. With this being said, we decided to use GitHub as our main
repository system so that way we can all collaborate on this project together. Everyone in
our group has used GitHub at least once before, so this will allow an easy transition for
this project.

The Github community has an abundance of open source code that will become useful
in development for our ESP32. Having GitHub also makes it super easy to transfer files
to one another while collaborating, which is what we loved so much about it. As far as
planning softwares go, GitHub does not have any of those, but Trello or Jira can always
be used separately for helping us plan our project milestones.

For our programming languages, we decided to go with C/C++ and Swift/SwiftUl. For our
ESP32, C/C++ will work best and it is also what we are most familiar with, so we can just
polish our skills on this project. Everyone has also worked with microcontrollers before
using C/C++, so this will make it so much easier to develop a working prototype. For our
application, Swift/SwiftUl was an easy option considering that Matthew has worked with
them before developing iOS applications. Since SwiftUl is super user friendly with a
real-time preview, it'll make developing an application super efficient and easy. SwiftUl
also has plugins for allowing bluetooth connections to external devices, which will make
integrating the application with our device a breeze. We can also test our application on
our own devices since we all have iPhones. This will make the development process
more streamlined rather than using an android development software.

44

3.1.8 Computer Vision

To enhance driver awareness and ensure real-time responsiveness, computer vision
plays a vital role in the SafeSight system. We explored software frameworks such as
OpenCV and TensorFlow/TensorFlow Lite to evaluate their capabilities in supporting
image processing and machine learning on embedded devices. These tools were
considered for their ability to process visual input from an onboard camera and perform
key tasks such as detecting traffic lights, recognizing road elements, and monitoring
driver attention. The following section outlines different CV softwares and models that we
explored along with their benefits and disadvantages from each other.

3.1.8.1 OpenCV

Computer Vision is a field of study with a goal that enables machines to gain an
understanding of visual information. OpenCV (Open Source Computer Vision Library) is
an open-source computer vision library for machine learning that is used worldwide by
hobbyists, researchers, and developers. OpenCV’s library includes image and video
processing, object detection and tracking, facial recognition, and machine learning
integration. Computer Vision and libraries such as OpenCV, require loads of data and
training to learn and classify images. Classifications made by humans everyday can be
replicated and even surpassed in their accuracy/speed with the help of intensive Al
training algorithms in computer vision.

3.1.8.2 Tensorflow and TensorflowLite

Tensorflow is another open-source computer vision library developed by Google that
supports a wide range of technologies. Examples of technologies that Tensorflow uses
are as follows: neural networks, dataflow graphs, tensor processing units (TPUs), Eager
execution, Auto differentiation, distributed computing, and high level APIls. Neural
network technologies are applied to tasks like image recognition and natural language
processing and are employed by tensorflow’s data flow graphs to represent
computations. Nodes in these graphs represent mathematical operations, while edges
represent multidimensional data arrays (tensors). This flexible architecture allows for
efficient execution and processing across GPUs, CPUs, and TPUs. This allows for
universal application across various platforms ranging from desktop computers to
high-end servers.

A decade ago, researchers at NVIDIA found that GPUs are useful at matrix operations
and can be utilized as a supercharger for compute-intensive tasks. This is made possible
because of GPUs massive parallel core architecture, allowing for thousands of efficient
cores to be launched in parallel threads. As a result, tensorflow runs 50% faster on the
latest NVIDIA GPU. In summary, TensorFlow integrates cutting-edge Al technologies
such as neural networks, TPUs, distributed computing, and high-level APIs to enable
scalable machine learning solutions across various domains. Its flexibility makes it a
cornerstone tool for developing state-of-the-art Al applications.

3.1.8.3 Keras

45

Keras provides tools for creating neural networks using simple, modular components
such as layers and models. Keras supports multiple backends, however it is tightly
integrated with tensorflow, making it especially powerful for scalable learning machine
workflows. Having easy integration with all TensorFlow projects, Keras can be installed
easily for implementation with a simple pip command. Acting as a high-level API within
TensorFlow, Keras simplifies tasks such as model definition, training, evaluation, and
deployment. An API stands for Application Programming Interface and functions as a set
of rules or specifications that allows different software applications to communicate with
one another, sharing functionality. Keras supports various data formats such as NumPy
arrays, and Pandas DataFrames, integrating seamlessly with TensorFlow datasets. In
summary, Keras serves as a bridge between high-level model development and efficient
execution through TensorFlow. Its integration into platforms like Teachable Machine
demonstrates its versatility for both beginners and advanced users in machine learning
workflows.

3.1.8.4 YOLO

YOLO stands for “You Only Look Once” and is a real-time object detection algorithm that
processes an entire image or frame with a single pass through a neural network. This
means that YOLO treats object detection as a regression problem, predicting both the
bounding boxes and classes of objects simultaneously. The algorithm works as such, an
image is taken or received, divided into a grid of cells, each cell’'s bounding box
coordinates and prediction is made, overlapping predictions are filtered to maintain most
confident predictions, and finally the objects are returned with their most confident
bounding boxes and confidence scores. This single-stage object detection method
makes YOLO an algorithm applicable to real-time processing speed scenarios.
Strengths of YOLO include processing images at around 150 frames per second,
single-pass architecture proves higher efficiency than other algorithms, and integrates
with frameworks like PyTorch and TensorFlow. On the other hand, YOLO'’s single-pass
architecture shaped for efficiency and speed has its weaknesses. YOLO’s grid based
approach can struggle to detect small or multiple objects, sacrificing accuracy for speed.
However, YOLO remains one of the most widely used object detection algorithms due to
its unmatched speed and versatility in real-world applications where rapid
decision-making is critical.

3.1.8.5 Scikit-image

Scikit-Image is an open-source Python library for image processing and computer vision.
It is part of the broader scientific Python ecosystem and is built on top of foundational
libraries like NumPy and SciPy. Scikit-lmage provides a wide range of tools for
manipulating, analyzing, and enhancing digital images, making it a popular choice for
researchers, engineers, and developers working on image-related projects. The library
emphasizes accessibility, offering a user-friendly API that integrates seamlessly with
other scientific Python tools like Matplotlib and Scikit-Learn. It supports tasks such as
filtering, segmentation, feature extraction, morphological operations, and geometric
transformations. Scikit-Image is widely used in fields like medical imaging, astronomy,
robotics, and more.

Table 3.1.8.5.1 Computer Vision Comparison Table

46

Framework Capabilities Ease of Speed | Accuracy | Best Use Cases
Use
OpenCV Comprehensive High Fast High Real-time
library for image/video | (simple applications
processing, object APIs) involving
detection, tracking, color/shape
facial recognition, and labeling
machine learning
integration
TensorFlow/ | Advanced deep Moderate | Moderate | Very High | Deep-learning
TensorFlow | learning framework based object
Lite supporting neural detection, facial
networks, TPUs, sentiment
dataflow graphs, and analysis
distributed computing.
TensorFlow Lite
enables deployment
on mobile/edge
devices
Keras High-level API for Moderate | Moderate | Very High | Custom object
building neural detection tasks
networks with that require high
TensorFlow backend, precision
simplifies model
creation, training, and
deployment. Supports
integration with
datasets like NumPy
arrays and Pandas
DataFrames.
Scikit-Image | Filtering, High Moderate | Moderate | Simple image

segmentation, feature
extraction,
morphological
operations, and
geometric
transformations.

processing tasks
including basic
object/face
detection

47

4. Standards and Design Constraints

In engineering and technology development, a standard refers to an established set of
guidelines, specifications, or practices designed to ensure quality, safety, interoperability,
and reliability across systems and components. Adhering to relevant standards is critical
when designing systems like SafeSight, which directly interact with users in real-world
environments such as roadways and vehicles.

Alongside standards, design constraints, such as hardware limitations, power
consumption, cost, real-time performance, and environmental factors also play a crucial
role in shaping system architecture and functionality. In this section, we examine the
specific standards relevant to embedded systems, wireless communication, and safety
protocols, as well as the constraints that influenced our design decisions throughout the
development of SafeSight.

4 .1 Industrial Standards

Industrial standards are formalized guidelines and specifications developed by
recognized organizations to ensure that products and systems are safe, reliable, and
compatible across various industries. These standards are created by organizations
such as the International Organization for Standardization (ISO) and the Institute of
Electrical and Electronics Engineers (IEEE), and serve to unify technical practices
across industries. These standards are especially important in sectors such as
automotive, electronics, and communication, where information, safety, and performance
are critical.

In the context of SafeSight, aligning with industrial standards helps ensure that the
system operates safely alongside existing automotive technologies, communicates
effectively with peripheral devices, and meets expectations for long-term reliability and
regulatory compliance. By referencing these standards, we were able to design a system
that aligns with industry best practices and prepares the project for potential future
scalability and integration. This section outlines the relevant industrial standards we
considered, including those related to embedded hardware, sensor communication, and
automotive safety systems, and discusses how they influenced our design and
fabrication.

4.1.1 PCB Design Standards

Printed circuit boards (PCBs) are everything in the electronics world. They support
everything from TVs to wearable smart watches. While PCBs are essential for everyday
life, how can we ensure that our devices and machines work as expected? Standards.
The Institute for Printed Circuits (IPC) was developed to support electronic consistency
and safety in manufacturing PCBs. They have developed a set of standards that have
become known as the IPC standards that ensure manufacturers create safe and
consistent products. The IPC has over 300 standards that cover the entire PCB lifecycle,
not just the manufacturing processes.

48

For this project, our PCB manufacturer of choice is going to be JLC PCB, so their
standards are going to be used. Their standards include maximum and minimum
thickness, clearness, required diameters and required export file formats. Our
manufacturer has a wide range of capabilities for this project’s Rigid PCB design. JLC
PCB allows anywhere between 1-32 layers of copper with a choice of four materials,
FR-4, Aluminum-Core, Copper-Core and RF PCB. The dimensions can range from 3
mm x 3 mm - 670 mm x 600 mm. Essentially, you can make it as big, or as small as you
want since the dimensions that they allow are such a huge range. Depending on the
material and layer count, you can range from 0.8 mm - 4.5 mm of thickness in your PCB.
They offer a variety of colors for the solder mask such as green, purple, red, yellow, blue,
white, and black as well to suit any project. When it comes down to the drilling of the
PCB, JLC PCB can range from 0.3 - 0.63 mm for one layer, 0.15 - 0.63 mm for two
layers, and 0.15 - 0.63 mm for 2+ layers. The via hole-to-hole spacing is 0.2 mm with a
pad spacing of 0.45 mm. For more experienced engineers, you can make your traces as
small as 0.1 mm for one layer, and 0.16 mm for 2 layers. The minimum distance from
track to the edge of the board is 0.3 mm.

IPC-2221 guidelines are for the design of PCBs. This standard involves a wide range of
aspects related to PCB design to ensure reliability, feasibility, and performance of all
PCBs.

Figure 4.1.1.1 Hierarchy of IPC Design Specifications

HIERARCHY OF IPC DESIGN SPECIFICATIONS
(2220 SERIES)

IPC-2221
GENERIC DESIGN

IPC-2222 IPC-2223 IPC-2224 IPC-2225 IPC-2226
RIGID FLEX PCMCIA MCM-L HDIS

IPC-2221 Generic PCB Design Specifications addresses many different guidelines to
ensure that quality, safe, and reliable PCBs are designed and manufactured. Some of
the key points that IPC-2221 addresses are:

e Design Requirements: IPC-2221 establishes fundamental design principles for
various types of PCBs, including rigid, flex, and hybrid boards. These principles
and guidelines are essential for achieving proper layer stack-up, trace routing,
component placement, and power management.

e Material Considerations: The IPC-2221 provides guidance on selecting PCB
base materials, including laminates, substrates, and surface finishes. It considers

49

properties like dielectric constant, thermal conductivity, and moisture absorption
to provide the best recommendations for material selection to meet the
performance requirements for the electronics under different conditions.

Electrical Performance: IPC-2221 covers specifications such as signal integrity,
impedance control, and electromagnetic compatibility (EMC). It also defines
standards for trace width, spacing, and controlled impedance. It ensures that
there are no stubs and sharp angles in traces to ensure signal integrity. To
achieve high-speed PCBs, IPC-2221 uses differential pair routing to transfer
high-speed signals via different platforms like USB, HDMI, and Ethernet in order
to achieve a clear return path for signals over continuous ground planes. This is a
critical area in the IPC-2221 standards to ensure reliable, high-speed PCB
functionality.

Mechanical Considerations: |PC-2221 defines standards for PCB
manufacturing. It creates standards for PCB board thickness, hole size, and
aspect ratios. Standard board thickness has been defined as 1.57 mm, but you
can use other thicknesses based on number of layers, copper weight and the
expected stress of the application on the PCB. The IPC-2221 defines minimum
and maximum diameters for holes in order to ensure reliable plating and
structural integrity. It also covers mechanical constraints such as warpage, bow,
and flexural strength. It sets limits on the acceptable warpage to ensure the PCB
remains as reliable and as optimal without any warpage. Under mechanical
considerations, it also covers topics for cutouts and slots, PCB board edge
clearances, and guides for mounting holes. This is essential for determining that
our PCB will be physically durable and manufacturable.

Thermal Management: Heat and temperature of PCBs are essential to make
sure boards don't overheat and that our components dissipate that heat as best
as possible. IPC-2221 offers recommendations for heat dissipation, thermal vias,
and component placement based on different conditions. It also addresses
design considerations for thermal expansion and contraction which will help not
cause damage to components when they are under stress. Thermal
management is essential to ensure reliability in everyday devices.

Manufacturing and Fabrication Guidelines: IPC-2221 covers design rules for
manufacturability (DFM) to ensure cost-effective production. It talks about how
easy the fabrication, assembly and testing can be when the rules are followed. It
defines hole sizes, pad geometries, and drill tolerances for various PCB classes
to reduce the likelihood of manufacturing problems and ensures efficiency of the
overall production process. It has become one of the most critical concepts for
PCB design to this day. The DFM in the IPC-2221 gives engineers tips and
guides them in order to ensure their fabrication process goes as smoothly as
possible, without any errors or setbacks.

Plating and Finishing: The IPC-2221 details requirements for plating thickness
depending on the material (copper, tin, gold, etc.). It also has rules in order to
prevent oxidation of certain materials and improve the solderability of your PCB
to increase its overall lifespan. Based on the material, it covers surface finishes
such as HASL, ENIG, and immersion silver to ensure electrical performance and
enabling long term corrosion resistance.

50

e Reliability and Testing: The IPC-2221 gives engineers recommendations on
design practices that support long-term reliability. It establishes criteria for
electrical testing, thermal cycling, and mechanical stress tests. It outlines
environmental considerations for optimal testing such as humidity, temperature
extremes, and vibration. This will help make sure the PCB will endure its
intended operating environment. This section talks about different reliability
classes ranging from 1-3. 1 being general electronics, 2 being electronics for
industry and 3 being high-reliability electronics for the medical, aerospace and
the military. Each reliability class has different standards that the electronics need
to meet in order to remain reliable to its intended use. When it comes to testing,
there are different categories of testing, ranging from electrical testing, to
chemical and material reliability. The IPC-22221 have standards to run tests until
complete technological failure. This is to ensure that these products are ready for
the everyday environment and to take information to improve the next generation
of products.

e Component and Soldering Considerations: The |IPC-2221 provides engineers
with guidelines for land patterns, annular rings, and pad design for through-hole
and surface-mount components for PCBs. It helps ensure compatibility with
soldering processes like wave soldering and reflow soldering.

e Design for Assembly (DFA) and Design for Test (DFT): The IPC-2221
recommends best practices for component orientation, spacing, and accessibility.
This helps manufacturers with the fabrication process to ensure all components
fit properly and there are no issues with installing the components. It also
specifies test point placements for in-circuit testing (ICT) and boundary scanning
to ensure PCBs are designed for real-world application testing and not for just
simulation. This will assist in faster assembly, lower production cost,
troubleshooting, etc.

Overall, the IPC-2221 serves as a complete guide for PCB design, providing a key
framework for creating reliable, efficient and durable electronic systems. These
standards will be utilized in this project as a guide for us to send a PDB design to be
fabricated at minimal cost and receive a properly functioning, and reliable PCB.

4.1.2 UART Communication Method Standards

The Universal Asynchronous Receiver/Transmitter (UART) is an asynchronous serial
communication interface that is found in nearly every embedded system, MCU, and
peripheral device. Unlike other complex protocols such as USB or Ethernet, UART does
not define a rigid protocol stack. Instead, it defines a method for sending and receiving
serial data, with the electrical characteristics and standards of the industry. Over the
years, several standards have become well established within the industry. Standards
such as RS-232, RS-422, and RS-485, that define both the electrical and mechanical
properties of UART-based systems.

For starters, UART communication is based on a simple data structure that includes one

start bit, five to nine data bits, an optional bit for error detection, and one to two stop bits
(Refer to Figure 3.1.6.1.2). This allows for asynchronous communication between two

51

devices without requiring a single, shared clock signal. For UART to work, both the
transmitting and receiving devices must be configured with identical communication
parameters (baud rate, data length, parity and stop bits) for successful transmission. In
UART, the start bit signals the beginning of a data frame, followed by the payload, then
the error detection bit, then the stop bits to indicate the end of the data transmission.
This framework structure allows UART to be extremely reliable in a multitude of systems
ranging from slow, low-speed debugging consoles to fast, high-speed GPS and
Bluetooth devices.

While UART defines the actual communication format, the actual physical and electrical
signaling is handled by other external standards. The most common among these
standards is the RS-232, which deals with voltage levels and different connector types
for serial communication. UART signals need to be converted to RS-232 voltage levels
using line drivers and receivers. RS-232 transmits a logic ‘1’ as a voltage indicator
anywhere between -3V and -15V and a logic ‘0’ for voltages anywhere between +3V and
+15V. This goes to show that RS-232 effectively uses negative logic compared to typical
digital logic levels. RS-232 is specifically designed for point-to-point connections for
distances up to 15 meters with baud rates up to 115.2 Kbps or higher. RS-232 has been
widely adopted for PC serial ports and remains useful for major industrial and
government equipment.

Sometimes, data needs to be sent over long distances. To solve this, UART often uses
RS-422 or RS-485 standards. The RS-422 standard only supports one transmitter with
multiple receivers, while the RS-485 standard supports multiple transmitters with multiple
receivers on the same differential pair of lines, allowing for multipoint communication.
These standards use differential signaling, which is beneficial for reducing noise and
increasing distance. These signals support higher data rates than single ended
standards like RS-232. RS-485 is often found in automation, control systems, and other
environments where long distance communication is crucial.

CTs . TXD-

RTS L - RXD+

G ¢ G G
TXD . TXD+ A
RXD RXD- B

Figure 4.1.2.1 Comparison of UART Standards

In today’s modern embedded systems, UART is used in the logic-level form or TTL
UART, where communication occurs directly between integrated circuits that are using
standard logic voltage levels such as 5V, 3.3V or 1.8V. This type of UART, often used
between a MCU and its peripherals, does not conform to the RS-232 voltage levels and

52

can’t be directly connected to RS-232 ports without performing some kind of level
shifting. TTL UART is simple, efficient, and effective, but careful action must be taken to
match the voltage levels between devices in order not to damage them.

Since UART has no control mechanism built in, systems will often implement flow control
in order to prevent data loss during high-speed or buffered communication scenarios.
For hardware, control flow used additional lines such as RTS (Request to Send) and
CTS (Clear to Send) in order to manage data transmission. These lines are typically a
part of the RS-232 specification. On the other hand, software flow control uses control
characters such as XON/XOFF, which are embedded into the data stream to pause and
resume data transmission. Flow control is especially important in systems where one
device has a limited buffer capacity or is extremely slower than the other.

There is not a standard baud rate that is defined by UART, but among the community,
there has become a set of commonly accepted values for different hardware and
operating systems. These include 1200, 2400, 4800, 9600, 19200, 38400, 57600, and
115200 bps. There are even higher baud rates like 230400, 460800, and 921600 which
are available on more modern devices. Most peripherals for UART allow for flexible
configuration though internal clock division or dedicated baud rate generators.

While UART does not define protocols beyond its framing, higher-level protocols such as
AT commands and Modbus RTU are often layered on top of UART links in order to
enable structured communication. For more demanding and modern applications, there
are additional standards such as IEEE 1149.1 (JTAG) for boundary scan testing or for
SoCs (System on Chips) and other modern technology.

In conclusion, while UART isn’t governed by a single protocol or standard, its operation
is shaped by widely accepted conventions and physical layer standards such as RS-232,
RS-422, and RS-485. These standards help define voltage levels, cable requirements
and signal types. This will ensure that UART communication is as robust and versatile as
possible. By understanding these widely accepted conventions, along with the best
practices for testing, framing, flow control, and signal integrity, designers can effectively
implement UART in both simple and complex systems.

4.1.3 12C Protocol Standards

As mentioned in Chapter 3, the 12C protocol, is a widely adopted, synchronous,
multi-master, multi-slave, serial communication protocol developed by Philips
Semiconductor in the 1980’s. It was designed for integrated circuits to communicate on
the same PCB, making it essential for slow, short distance communication within the
same embedded system.

I12C operates over two bidirectional open lines: the Serial Data Line (SDA) and the Serial
Clock Line (SCL). These lines are connected to a common supply voltage (typically 3.3
V or 5 V) and are pulled up. The devices on the bus can pull the line down, but they can’t
drive it high. This will ensure that the communication between multiple devices is safe
and there are no serial conflicts. This protocol supports multiple masters and multiple
slaves, meaning that any master device can communicate and transfer data to any slave
within the system.

53

Slave 1 Slave 2 Slave 4

so I [[I

SDA | | v |

MMaster 1 Slave 3 Master 2

Figure 4.1.3.1 12C Multi-Master Multi-Slave Communication

Since 12C communication is synchronous, each data transfer begins with a start
condition (high-to-low transition on SDA while SCL is high) and ends with a stop
condition (a low-to-high transition on SDA while SCL is high). Data is transferred in
packets of 8 bits (1 byte) followed by a 1 bit acknowledgment (ACK/NACK). A 7 bit
address field has become the most common format because it allows up to 127 different
slave devices on a single bus. For larger systems, an extended 10 bit addressing mode
is supported (Refer to Figure 3.1.6.3.2).

The 12C protocol has developed a standard for several bus speeds:
Standard Mode: Up to 100 Kbps

Fast Mode: Up to 400 Kbps

Fast Mode Plus (FM+): Up to 1 Mbps

High-Speed Mode (HS-Mode): Up to 3.4 Mbps

What's great about 12C devices is that the devices that support different speed modes
can coexist on the same bus. This is of course if the master initiates communication at
the appropriate speeds depending on the device. However, all devices must support the
lowest common speed if switching mechanisms are not used.

Electrical characteristics and timing requirements for 12C are defined and maintained by
NXP Semiconductors in the 12C-bus specification. This specification outlines detailed
constraints on rise/fall times, bus capacitance, pull up resistor values, and certain
voltage thresholds. For example, the total bus capacitance should never exceed 400 pF
because it limits the cable length and number of devices that can be added. Choosing
pull-up resistor values (typically between 1 KQ and 10 KQ) is crucial for maintaining
reliability and signal integrity.

In the end, the 12C protocol is set by a well-defined standard that allows for reliable,
low-cost, two-wire communication among chips on the same board. 12Cs use of multiple
addressable slave and master devices, along with its simple hardware interface makes it
highly versatile. Whether in small networks or in complex systems, 12C remains a
fundamental tool for embedded systems development.

4.2 Design Constraints

Throughout the development of SafeSight, a number of design constraints helped shape
a handful of our engineering decisions. These constraints define the boundaries within

54

which the system must be developed and deployed, often balancing performance, cost,
safety, and feasibility.

Key constraints we considered include time limitations due to project deadlines,
economic factors related to component affordability and scalability, and compliance with
federal regulations governing vehicle safety and electronics. In addition, we prioritized
health and safety considerations to ensure the system does not distract or endanger the
driver, and manufacturability to support the potential for real-world production and
deployment down the road. The following section details how each of these constraints
impacted our design process and the decisions made to meet both technical and
practical requirements.

421 Time

For this project, one of the main constraints is time. Since this project is a Senior Design
only project, it gives us only a certain amount of time to complete it by fabricating our
idea and design to bring our vision to life. Due to this, there are some decisions that
must be made with time in mind that will help us meet deadlines rather than taking
longer to build a better project but possibly not completing the project.

One crucial issue was the time constraint because we were limited to one academic
calendar year to make a fully functional, flawless prototype. Meaning, there are no
extensions on the timeframe, giving us hard deadlines that we need to meet in order to
pass the class and move on to graduation. Lucky for us, we already had our group
planned out from a semester in advance and we had a general idea about what we
wanted to do. We started doing research and making sure our idea was feasible in this
time frame beforehand in order to get ahead of everyone else.

Since software is involved in our project, we will run into another issue with time due to
all of the debugging and testing that will need to be done. When it comes to software
and programming, you never know how long a problem is going to take to get solved.
This will cause multiple setbacks that must be fixed within this short time frame that we
are given. Meaning, these unforeseen errors will pose a massive threat to our deadline
and we will need to work efficiently to take care of these errors as fast as possible.

An added issue that may affect this project is ordering and shipping of parts. Especially
from JLC PCB, where the shipping can take anywhere from 4-6 weeks. We will need to
test and debug using breadboards in the mean-time so that we know our software works
and when the PCB comes in, we can then put all of the components on it and just simply
upload the working code. If we don’t test and debug during the shipping of the PCB, it
can lead to massive problems with time management, especially with a hard deadline.

3D printing has become common among Senior Design projects. Since we are planning
on 3D printing the housing for our device, we need to take into account the fabrication
time and account for printing errors, especially since no one in our group has prior 3D
printing experience. This can lead to us wasting valuable time printing and designing
when we can be debugging or soldering components on the PCB.

The result of all of these time constraints can lead to rushing a project. Rushing can
cause us to cut corners and not give the expected results that we want. Time

55

management, accountability and communication need to be on point for all group
members so that way we can meet the goals that we have outlined for each other and
this project as a whole. If you say “I will do it” then you better do it by the expected
deadline so that way the group doesn’t fall behind. We need to hold each other
accountable for our work. By not doing these things, it can lead us down the path of
failure by not meeting the hard deadlines that have been set for us.

4.2.2 Economic

For SafeSight, one of the most challenging constraints was the economic constraint.
Since we are all college kids, and don’t have the funds to build the most expensive, best
performing products, it made it difficult because we had to decide if we wanted a
cost-effective product or a better performing product. Specifically, for the radar sensor,
there were many different options that involved varying ranges for detection. There was
a hard tradeoff between range and cost in order to make sure that we don’t break the
bank.

Another economic constraint was that we needed to take into account if any of our parts
break, we need to buy a new component. We may not take that into account with our
budget, so we need to alot time and money in case we run into that roadblock. By doing
this, it allows us to not go over both time and money.

When researching parts, we came across another economic constraint, the Raspberry
Pi. We ran through many different subsystems for the computer vision aspect of this
project. Our first idea was to use a NVIDIA Jetson Nano Super which runs about
$249.00. This was obviously way out of our budget range and we decided to go with
something a little more budget friendly, the Raspberry Pi V5. The difference between the
two is that the Jetson Nano excels in Al and computer vision tasks due to its NVIDIA
GPU, while the Raspberry Pi V5 is more for general use with a focus on speed and
versatility. The Raspberry Pi V5 runs about 90 dollars and depending on the peripherals
that we need, it may end up costing us around $130-$150, which is much more
affordable than the Jetson Nano, and could still do everything that we need it to do to
handle our computer vision for this project. With the Pi’s versatility, it will allow us to add
many different peripherals without having to worry about if the device is compatible or
not. This will cause us to save time and money in the long run.

Just like the Raspberry Pi V5, another piece from the parts selection that we needed to
consider was the microcontroller unit of our project. The first option that came to mind
when making this selection was to use an Arduino microcontroller that has built-in Wi-Fi
to connect to the phone for our application use. However, there were very limited options
when it came to those requirements that would fit our budget. We decided to find a
microcontroller with both Wi-Fi and Bluetooth interface so that way we SafeSight can
communicate with our application with ease to view pictures and files from Bluetooth
rather than Wi-Fi. We stumbled across the ESP-32 and realized that it would be perfect
for our project since it had Wi-Fi and Bluetooth with a fast enough CPU to get the job
done. Buying an Arduino MCU, specifically the ATMega328p, would’ve just been a waste
of money since it did not have the specifications that we were looking for. The ESP-32
costs about $12 for a three pack while the ATMega328p costs around $9 for one. This
benefits us because in case we break an ESP-32, we don't have to waste both time and

56

money buying a new MCU. Therefore, because of this economic constraint, we decided
to pick the ESP-32 since it more accurately matched our needs.

In conclusion, the economic constraint poses a massive threat to our project because it
causes us to pick products that are more budget friendly rather than favoring
performance. This means that there needs to be a lot of research that needs to be done
so that we don’t run into challenges along the way. We could also help with the
economic problem by throwing in a little extra money along the way to help increase our
budget to help overcome any financial problems that we may encounter.

4.2.3 Federal Regulation Constraints

Developing driver safety technology to be mounted on a windshield involved adhering to
several federal regulations and standards to ensure safety, functionality, and compliance.
The Federal Motor Vehicle Safety Standards (FMVSS) dictates some requirements in
regards to the windshield mounting aspect of this system. Firstly, there are retention
standards that include the windshield remains retained on the car in any aspect of a
collision or sudden change of force applied to the windshield. This directly correlates to
the device as it must not intrude on 50% of the windshield periphery, given the vehicle
has passive restraints on the windshield and 75% periphery for vehicles without passive
restraints. The device must also not obstruct the area swept by windshield wipers, as
this can compromise visibility during adverse weather conditions. Under section
108(a)(2)(A) of the FMVSS regulation text it states : “manufacturers, distributors, or
repair businesses are prohibited from rendering any safety feature inoperative.” Meaning
that our device cannot interfere with windshield functionality or any other safety systems
like airbags or lane assistance in more up to date vehicles.

Federal Motor Carrier Safety Administration (FMCSA) regulations also add onto the
federal regulations expected in this system. One regulation is the placement of the
device in the vehicle. FMCSA regulations define specific areas where devices can be
mounted on windshields, these areas are restricted to no more than 8.5 inches below
the upper edge of the windshield wiping area and no more than 7 inches above the
lower edge of the area swept by windshield wipers. The bright side of the FMCSA
regulations is that they do allow mounting devices on the windshield as long as they are
explicitly designated “vehicle safety technology” which includes systems like lane
departure warnings, braking assist systems, driver cameras, GPS units, traffic sign
recognition, lidar, radars, and sensors. The system being designed meets these
specifications.

National Highway Traffic Safety Administration (NHTSA) guidance tells requirements for
the device being developed to acquire correct certification. The manufacturers, in this
case being the team developing the product, must comply with all applicable FMVSS
before being sold or installed in vehicles. This includes the devices not hindering existing
safety standards like crash resistance or visibility. Given that the device will be installed
after the vehicle is purchased from a car dealership, the installation process must not
compromise compliance with FMVSS standards for new vehicles or equipment. Some
examples include not interfering with windshield integrity or other factory installed safety
features. As windshields also have their own regulations such as coloring, obstruction
prohibitions, and decals or stickers, mounted devices must not violate these
specifications as well.

57

Additionally, there must be testing conducted to ensure that the method of keeping the
device in place is effective in a collision scenario. Given a collision, the device cannot
result in a projectile, must withhold dynamic shock and vibrations as well. The device
must minimize distractions by ensuring the drivers do not look away from the road for
more than 2 seconds as this will undoubtedly cause the system to function inversely
from its purpose.

4.2.4 Remaining Constraints

4.2.4.1 Health and Safety

Another constraint that must be factored in when developing and testing this project is
health and safety. Since this project is going to go inside people’s cars, we need to make
sure that the product is reliable. The safety of people while driving is our top concern and
the last thing we want is a device that doesn’t work properly or is slow. For example, we
don’t want the device to pick up a green light by mistake, alert the driver, the driver go
into the intersection, and then crash because it wasn’t a green light. As a group, we
need to make sure our device is reliable and accurate so that way it isn’t giving false
results to the driver.

We had to also take into account how we were going to be powering the device. The last
thing we wanted is to power it via batteries, and under intense heat, have the batteries
explode and cause a fire in the car. The safety of the drivers was taken into account after
we realized that most people keep their cars outside. As we all know, keeping a battery
in direct sunlight is no good. That is why we decided to power it via the 12V cigarette
lighter in the car. That way, there is no potential for a battery related fire, keeping the
drivers safe at all times.

4.2.4.2 Manufacturability

The final constraint that is probably the most important for this project is
manufacturability. Our group is limited to the lab equipment that is provided to us for
Senior Design students only. This limits the amount and type of manufacturing that we
can do severely. This means that we need to keep our design simple enough to be
fabricated in the lab.

Since we are allowed to buy components online, that means that we are not fabricating
any MCUs by hand. This means that we can just simply put the components that were
purchased online together and make them communicate. The only thing that needs to be
truly fabricated is the PCB and that gets sent out to JLC PCB to get done over there.
However, once we get it back, we need to solder all the components onto the PCB,
which will factor into the manufacturability and feasibility constraint for this project.

58

5. Artificial Intelligence Comparison

As part of our research methodology, we compared the performance and usefulness of
two modern Al platforms, ChatGPT and Perplexity Al. We are going to use these two in
order to support our development process. These tools represent the forefront of natural
language processing and are commonly used for gathering information, generating
code, and clarifying complex concepts. We chose to evaluate both platforms to
understand their differences in functionality, depth of responses, and practical value
during different phases of the SafeSight project.

Our comparison considered several factors, including the accuracy and clarity of
responses, the ability to handle technical queries, the sources of information provided,
and the overall user experience. ChatGPT offered detailed, conversational explanations
and code support, while Perplexity emphasized citation backed answers and concise
summaries. By analyzing these tools through practical use cases, we gained insight into
how each platform can aid in research and development. The following section presents
our findings, comparing the strengths and limitations of each Al assistant in the context
of our project.

5.1 ChatGPT

ChatGPT has become known as one of the worlds best tools in regards to conversing,
creativity, and problem solving. This human-like conversationalist is amazing as a
sidekick where we as humans can ask it problems pertaining to detailed examples we
come across and it can work with us to solve issues like debugging code, explaining
concepts, making images, and much more. Throughout the progress of the project,
ChatGPT was used to refer to spec sheets that gave us hardware pinouts, example code
in order to flash the hardware correctly, and ideas on how to approach certain wiring and
applications to make the system work as intended. For example, in regards to
conducting research on this system we are designing, chatGPT offered valuable insight
on what to research in regards to limitations, compatibility, and functionality of all
components. Alongside the brainstorming capabilities of ChatGPT, there were also uses
for this LLM in regards to integrating hardware at the testing bench. ChatGPT offered
valuable insight on how to program the ESP32 through the Arduino IDE for example,
which gave us the rundown of required files, example code, and synchronizing
processing data into the ESP32 board.

59

ChatGPT 4o > o @RE R ChateET/40 G &
3. Coding the ESP32 (Arduino IDE) how can the the c4001 mmwave radar sensor and the MPU-6050

be integrated via the ESP32?
Install Required Libraries

« Wire.h (for 12C) Integrating the C4001 mmWave radar sensor and the MPU-6050 IMU via an ESP32 involves interfacin
them through appropr protocols and their data processing.

+ Adafruit_MPU6@5@. h (for MPU-6050)

- HardwareSerial.h (for UART communication with C4001)

1. Understanding the Components
Code Example

©4001 mmWave Radar Sensor
- Uses UART or SPI for communication.

+ Provides motion and presence detection data.

MPU-6050 IMU (Accelerometer & Gyroscope)

// Use UART2 (GPI016 RX, GPIO17 TX)

ESP32

Serial.begin(115208); // Debugging via S onito,
mnWaveSerial.begin(115200, SERIAL_8N1, 16, 17); // muWave UART

- Supports UART, 12C, SP1, and GPIO.
+ Has multiple UART ports and an 12C bus.

+ Capable of real-time data processing and transmission via Wi-Fi or Bluetooth.

zed."); B
3 2. Wiring the Components

+ @R 5 (=)

+ O R + @

Figure 5.1.1 ChatGPT Usage Example

From the ideas that ChatGPT gave insight on, another LLM used was Perplexity.
Perplexity is an Al powered search engine that gives us real time information that then
provides sources. These sources were often educational texts, hardware manufacturing
firms, and engineering specific websites that often encountered experiences with these
components.

5.2 Perplexity

For the majority of research conducted on compatibility, meeting constraints, identifying
what components were going to function according to the specifications of the system,
etc. Perplexity offered a very good platform to identify all of these requirements with
research backed to prove its answer. Much like searching on the web through engines
like Google, Perplexity was able to search and find direct, reputable sources for the
information it provided in accordance with the prompt. This engine also offers features to
expand knowledge in which it provided follow up questions to provoke thought and thus
led to more questions being answered simply from the Al's recommendation.

60

< o &

| am designing a device where it needs an inertial sensor to detect
movement. the device will be inside of a moving car. Why would the
MPU-6050 be an ideal inertial sensor for this application?

© Search

we joy-it 7 iies <@ maker w) components101 . elprocus # instructables & tdi

% Perplexity
The MPU-6050 is an ideal inertial sensor for detecting movement in a device placed inside a
moving car due to the following reasons:

Key Features and Advantages
1. 6 Degrees of Freedom (6-DoF):

e The MPU-6050 integrates a 3-axis accelerometer and a 3-axis gyroscope, enabling it to
measure both linear acceleration and angular velocity. This combination provides
comprehensive motion data, which is essential for tracking movement withina car 1 2 4.

2. High Precision and Configurability:

e The sensor features a 16-bit ADC for high-resolution measurements, ensuring precise
detection of motion and orientation changes.

e It offers configurable sensitivity ranges for both the accelerometer (+2g to +16g) and
gyroscope (+250°/s to +2000°/s), allowing adaptation to varying dynamics of a moving car
D86

3. Compact Size and Low Power Consumption:

e With dimensions of just 25 x 20 x 7 mm and low power requirements, the MPU-6050 is well-
suited for compact and battery-powered devices 1 5.

4. IPC Communication Interface:

e The sensor uses the I2C protocol, simplifying integration with microcontrollers or other
systems in the device, ensuring efficient data transfer 2 4.

23) |Ask follow up ¢ 9

ENVIFONMeniar CONAaITNoNS INSIAe A4 CAr 2 #

Figure 5.1.2 Perplexity Ai Usage Example

Here we asked the question on a hardware piece we already decided on. This engine
then gave a cohesive list of functional advantages for the inertial sensor. Bringing real
information from sources cited at the end of the information provided in the numbered
grey boxes.

= Related

Q How does the MPU-6050 compare to other inertial sensors in terms of accuracy

Q What are the main advantages of using a 6-DoF sensor like the MPU-6050 in a car environment

Q Can the MPU-6050 handle high-frequency data without losing accuracy

Q How does the MPU-6050's power consumption affect its usability in battery-powered cars

Q What are the typical applications of the MPU-6050 in automotive technology
These questions are what the Al would “guess” you want to know more on, provided
added information on topics we may not have thought to cover in the expenditure of our

research. This LLM was very useful and proved to be a helpful research assistant where
the user, us, was able to pick and choose what information was valuable, similar to the

61

process of using a search engine the traditional way. Except, this LLM allowed for
quicker navigation, source identification and summaries of the information you can
expect to find in the sources.

5.3 Benefits of Using Al

Al can be incredibly useful during the design phase of a project like SafeSight by helping
us analyze large amounts of data quickly and identify patterns that might not be obvious
through manual testing. For example, when evaluating sensor data or camera feeds, Al
tools can highlight inconsistencies, detect anomalies, or simulate various environmental
conditions. This makes it easier to tweak the design early on and avoid problems down
the line. It's especially helpful when trying to optimize hardware placement or test how
different inputs affect system behavior.

During testing, Al can speed up the process by automating repetitive tasks and
simulating edge cases that would be time consuming to recreate manually. It can
evaluate system responses to a wide range of conditions. For example, low lighting, fast
moving objects, or noisy signals. This will cause the system to flag any unexpected
behavior. This not only saves time but also helps ensure that SafeSight performs well in
real world scenarios. With Al, we can gather deeper insights into system performance
and make more informed decisions about adjustments or improvements.

Overall, using Al as a tool during design and testing allows us to work more efficiently
and with greater confidence. It helps reduce trial-and-error cycles and supports data
driven decision making, which is critical for building a reliable, safe, and user friendly
system. For a project like SafeSight, where safety and precision are top priorities, having
Al assist in the background can make a big difference in the quality of the final product.

62

6. Hardware Design

In regards to the whole system there is a list of physical constraints we need to fulfill in
order to make sure the system is operable within the environment of a moving vehicle.
First, we must make the system fit behind the rear view mirror of a car without
obstructing the view of the driver. In order for this to be done we went ahead and
referred to the guidelines by the Federal Motor Carrier Safety Administration (FMCSA)
which dictated that a device in vertical position must not exceed up to 8.5 inches below
the upper edge and up to 7 inches above the lower edge of the area swept by the
windshield wipers. The device must also remain outside of the driver’s sight lines to the
road, highway signs, and signals. The device cannot be placed in areas swept by the
windshield wipers unless they are explicitly defined as “Vehicle Safety Technology”.
Fortunately for the system, the device is defined as such.

The FMCSA has broadened its definition of “vehicle safety technology” to include
systems such as Camera, Lidars, Radars, Senors, and video systems for collision
mitigation, lane departure warnings, GPS, and traffic sign recognition. The reason these
regulations exist is to balance technological advancements in vehicle safety systems
with driver visibility and road safety. Mounting devices outside of these prescribed areas
or obstructing sight lines can lead to violations and increased risk of distracted driving,
which in turn would counteract the purpose of this device we are developing.

Secondly, the device must be durable and robust enough to handle environmental
resistance. In the environment of traffic, there are multiple factors that can affect the
device. When you turn the car on, its engine begins to provide vibrations throughout the
whole vehicle (unless electric). When the car comes to a sudden stop, the rapid change
in velocity makes the device prone to heavy change where the force moving forward will
overcome the force moving against it. Given the change in seasons we experience on
earth, the device must also withstand heavy temperature readings from the sun during
warm months and also colder temperatures sometimes below 0 degrees fahrenheit. In
order for these conditions to not affect the system being developed, it is imperative for
the components in the hardware design to all have ideal temperature ranges, shock
withstanding, and proper solidified connections so that the system does not come apart
in the rapidly changing environment that automobile traffic can provide. These
considerations bring about another aspect of the mounting mechanism needed for such
a system to properly withhold the environment. The mounting system should be secure
yet easy to install and remove without damaging the windshield. It should resist the said
vibrations and movement while maintaining proper alignment with the design of the
system.

In regards to the hardware itself, designing the PCB will also require these
considerations. When designing a PCB for use in an automobile, it is crucial to select
materials capable of withstanding the shocks, vibrations and harsh environmental
conditions to this dynamic environment. Commonly used PCB materials include the
FR-4. Since the FR-4 has both standard and high-tg variants, it gives us a range which
will be constricted by budget in order to make this system rest on a robust board. These
boards are printed on a fiberglass-reinforced epoxy laminate material which is widely
used in PCBs. This reinforcement provides high mechanical strength and rigidity, high
temperature variants (high tg) can withstand temperature ranges up to 150 deg. C (302
deg. F), and it is cost effective for the budget. The one limitation for this is that the

63

vibration resistance is moderate, in order to work around this we would need to encapsu
the board in a case, as we planned to do so already. The hardware being implemented
on this board will also meet all the shock and temperature robustness described. The
recordings of those specifications are provided in the sections pertaining to those IC’s as
it is a reason for the decision process on the components.

There are multiple mounting systems that can be implemented in order to withstand
these environmental conditions. First and foremost, the most ideal would be a velcro
mounting system. This system offers heavy duty velcro straps that are used to attach
devices securely to mounting surfaces, in this case the windshield. These advantages
are that it is flexible and adjustable, allowing for repositioning and removal without the
need of extra tools. This system has proven resilient against vibrations and shocks in
dynamic environments and also it is extremely strong and durable, capable of holding
significant weight (2 square inches of velcro can hold up to 175 pounds). The rearview
mirror replacement mounts that attach to the windshield are using the same mounting
button as a rearview mirror. This system utilizes an existing mounting point, avoiding
adhesives and drilling, while providing a stable attachment point for devices. Since the
rearview mounting system is commonly used for backup cameras, monitors, and other
devices, it would be ideal for the system to be mounted as such, combined with the
velcro in order to ensure shock prevention and even handle scenarios where the device
remains secure in a crash or accident.

Third, it is imperative for the design of this system to be appropriate for human-machine
interaction (HMI). The interface should be intuitive and easy to understand all while
minimizing driver distraction. This includes clear visual and audio indicators for warnings
on collisions and distractions. Avoiding the use of extra peripheral devices for use,
avoiding complex menus and prolongs attention interactions. As this system will be
communicating to the driver on various conditions to be alert on, it is also important for
the information to be conveyed in a concise and relevant manner to avoid cognitive
overload. This would then bring us to follow the National Highway Traffic Safety
Administration’s (NHTSA) guideline for in-vehicle electronic devices. These include but
are not limited to avoiding the driver looking away from the road for more than 2 seconds
at a time, and minimize manual inputs during operation. As this system will function
without the need for a driver to input anything after installation, this requirement is met.
As Well as the system’s implementation to be a simple audio signal from a piezoelectric
buzzer, the system will ensure the driver’s attention will remain on the road with no
distractions being met. Alongside these design features, the method of powering and
communicating data with the driver will also be minimal to reduce the space of hardware
in the car, removing the concern of the system interfering with the driver’s use of the
vehicle. Since the car’s 12V cigarette lighter port will be used to power the device, it is
simply a matter of cable management that can be routed to avoid any interference with
the shifting gear and the buttons accessible to the driver. The ESP32’s functionality of
bluetooth will transmit data from the device to the user’s application seamlessly without
additional hardware as well. This will be ideal in keeping the system from interfering with
the driver’s focus on the road.

6.1 Power Supply Design - Regulators

64

The device with its power demands exceed the probability of having a wireless approach
that involves operating on a rechargeable battery. The Raspberry Pi 5 running computer
vision tasks in parallel with the ESP 32 consumes an average of 7.2 Watts an hour,
making it so that the battery small enough for a space conscious design would be
depleted every week (5-7 hours of use). Thus, a wired design for power that taps into the
battery of a vehicle using the cigarette lighter port is the most power conscious and
efficient design to power the Safe Sight device.

In addition, keeping our source of main power in mind (12 V car battery), we must also
consider the operational power requirements of our ESP 32 (3.3V) and Raspberry Pi
(5V). These constraints require us to design regulators that convert and drop down the
main 12V source to 5V and 3.3V to properly power the individual operational processing
components and sensors in our device. First, we must design the first regulator to step
down the 12V voltage of a standard cigarette lighter port in a vehicle to 5V and then
make a decision to either have the second regulator tap from the 5V power and convert
it to 3.3V or straight from the 12V source (12V to 3.3V regulator).

6.1.1 ESP 32 Power Supply Regulator - TPS564252

The TPS56425x is a line of regulators that take 3V-17V inputs and can convert them to a
range of low voltage outputs 0.6V - 10V at a 2-A continuous current. The TPS564252
supplies a steady 3.3V output with a great operational efficiency at a 12V input, making
this model in the TPS line of regulators meet the specifications of our ESP 32 perfectly.

ViN P> 1 | VIN
| on
EN p»— 5 |EN
3 | GND

simplified Application

Figure 6.1.1.1 Power Supply Regulator Schematic

65

100%
90%

80% /; /
/

70%
60%

50%

Efficiency

40%
30%

20% — Vin=6V
10% — vin=12v | |

L] |
0
0.001 0.005 0.02 00501 02 05 1 2 34
lout(A)
Figure 6-16. TPS564252 Efficiency at 3.3 Vgoyt with a 3.3-uH
Inductor

Figure 6.1.1.2 Power Supply Efficiency Graph

TPS564252DRL
U Juw

P Z0momm
s
—Lcff
= T e Ribt
oo S 4530 ()om
——Cout
% T2 ==ou

100
mmmmmmmmmmmmmmmmm

nnnnnn

.||.<

Figure 6.1.1.3 Total Power Supply Schematic

Using TI WEBENCH power designer we customized this TPS564252 voltage regulator
circuit to meet our power specifications for the ESP 32. The simulated outcome and
estimated BOM are as follows:

Vout Actual: 3.32 V

Vout Tolerance: 2.67%
Total BOM: $0.72

BOM Count: 13

Vout: 3.3V

Duty Cycle: 28.29%
Efficiency: 94.2%
Frequency: 620.82 kHz

. Pout: 6.6 W

10. Mode: CCM

11. Vout Peak-to-Peak: 8.31 mV
12. Vin Peak-to-Peak: 368.66 mV

CONPAPWN S

66

13. lout: 2A

In conclusion, the TPS564252 proves itself to be a cost effective and efficient choice as
a voltage regulator for the ESP 32, performing with an efficiency rate over 90% when

given a steady input voltage of around 12V (Figure 6.1.2).

6.1.2 Raspberry Pi Power Supply Regulator - TPS566242

The TPS56624x is a line of regulators that take 3V-16V inputs and can convert them to a
range of low voltage outputs 0.6V - 7V at a 6-A continuous current. The TPS566242
supplies a steady 5V output with a great operational efficiency at a 12V input, making
this model in the TPS line of regulators meet the specifications of our Raspberry Pi

Rrer == Cout

% Resa

< VDUT I

mmmmm

perfectly.
L

Vi Lvin sw2r

_ EN >EN AGND ﬁ

Cin == GND

FGND 7:] e
Simplified Schematic
Figure 6.1.2.1 Pi Regulator Schematic

—————
mmmmm

yyyyyy
nnnnnn

Lo
=T 100nF
nnnnnnn 0%

ite

Figure 6.1.2.2 Pi Full Power Supply Schematic

67

1
0.9
> 0.8
2
2
o
=
w 07
0.6 — VIN =6V
— VIN =12V
— VIN =16V
0.5
0.001 0.01 0.1 1 6
lout (A)
Figure 6-17. TPS566242 Efficiency at 5 Vgoyy with a 2.2-yH
Inductor

Figure 6.1.2.3 TPS566242 Efficiency Graph

Using TI WEBENCH power designer we customized this TPS566242 voltage regulator
circuit to meet our power specifications for the Raspberry Pi 5. The simulated outcome
and estimated BOM are as follows:

14. Vout Actual: 5V

15. Vout Tolerance: 3.64%

16. Total BOM: $1.35

17. BOM Count: 15

18. Vout: 5V

19. Duty Cycle: 42.8%

20. Efficiency: 94%

21. Frequency: 570.11 kHz

22. Pout: 25 W

23. Mode: CCM

24. Vout Peak-to-Peak: 11.6 mV

25. Vin Peak-to-Peak: 600.86 mV

26. lout: 5A

In conclusion, the TPS566242 proves itself to be a cost effective and efficient choice as
a voltage regulator for the Raspberry Pi 5, performing with an efficiency rate over 90%
when given a steady input voltage of around 12V (Figure 6.1.2.2).

6.2 Development Board - ESP32

We will be utilizing the ESP32 MCU in this project. However, we must create our own
development environment on our custom PCB design to interact and access the ESP32
MCU. This includes creating a schematic and PCB development board that is able to
communicate via serial to upload and debug the ESP32 MCU, connect our MCU to all
peripheral components, and power our MCU appropriately. In this section, we will
showcase our selections for USB-Serial converters, MCU footprint, and switch
configurations.

68

6.2.1 Micro USB - UART Conversion Schematic

On our development board, we selected a micro USB converter circuit to allow for
improved accessibility to debugging our MCU in the future. This conversion circuit will
then lead to an integrated circuit (CP2102) to communicate via serial communication to
our ESP32 MCU.

M,c mU 555ugtUSB_UART e

VBUS EXT_5V
J1 T T
VBUS -
- oND vBUS D3 gy BATTEOT | \\s8 oN
GMND D- 3 4 UsSE TF
g{GND D+ ['
GND NC o
GND |2 & = [=
USB_CONE xx
m m m
(9] (7] (7]
=)) =)
(4]} (%3] N
=) E 2

G0 GNoNBeND

o @ @

Figure 6.2.1.1 Micro USB Conversion Schematic

6.2.2 IC CP2102 - UART Conversion Schematic

The integrated circuit CP2102 is a standard used by most Espressif ESP32 development
boards. Therefore, for its efficiency, compatibility, and compact size, we chose it to serve
as our USB-Serial converter to communicate with the ESP32 processor. The CP2102
and the micro USB-UART adapter are vital in our PCB/Schematic design to provide a
viable and quick way to upload and debug via serial communication.

69

XD
RXD

I, @
| <
(=]

DTR
DSR
RS

U1 & B
o goge e
pookFZExo
DCD 1 .
RI 7% DCD
GND 3 R
SHD
VDD33 USB_DF 4 | GND
TsEoON 5| D+
| O 1 |
Ir—? ;ng eg
20 1 E rifri
w oo
D=l e
mNnOS200
220N

CP2102N-A02-GQFN28

10uF/10V(20%) FIUFEO’VUOG‘J
@

9
10
11
12
13
14

b

3
&

R23

10K(5% }NC)

Figure 6.2.2.1 UART Conversion Schematic

6.2.3 AMS1117 - USB 5V - 3.3V Power Supply Converter

The AMS1117 power supply will convert 5V DC from the micro USB to 3.3V so that the
ESP32 can be powered by the same source at which it will be receiving serial data when
uploading/debugging (Micro USB). This way we can ensure that the ESP32 will be
receiving power delivery and serial data consistent from the same source. We will be
moving the LED in this schematic to the 3.3V header as a way to make sure that the
power supply is supplying power properly

Power Supply

EXT_5V VDD33
U2
= 4
N 3 P_vouT
= win £ 2
2 wvout
o
ANMSTITT 3]
K(5%) “
== =
D2UFNOV(20%) B2uF10v(20%)
RED LED|
N
GND GND GND GND

Figure 6.2.3.1 USB 3.3V PWC Schematic

70

6.3 Custom Footprints - Schematic to PCB

After creating a development board schematic layout for our ESP 32, we must now
create custom footprints for our sensors to be housed on our PCB. The C4001 Radar
sensor and MPU-6050 Accelerometer’s dimensions will be taken from their respective
datasheets and a custom footprint will be made to house them accordingly on our PCB.
The custom footprints will be linked to pin headers on our overall schematic.

6.3.1 C4001 Radar Sensor - Custom Footprint

In order to obtain the exact physical dimensions and locations of pin headers on the
development board of the DFRobot C4001 Radar Sensor, we must first reference its
datasheet. Once the diagram and appropriate dimensions have been referenced from
the datasheet, we can begin to create a custom footprint to associate with pin headers
on the schematic. This will make sure our PCB design houses all its components
properly and keeps its dimensions within measurable standards. Below is a 5-pin header
that will serve as a placeholder in the schematic design, to then be associated with our
custom C4001 Radar sensor footprint in our PCB design.

26.00mm

&30, 00mm ———->>

— [RUN B OUT] =
——J S0 ool =
BN mm\ave BRI
= [m] =
Ny [SEEX3
o \ Mo ooo)
g N/ LOOOQ |\ J
3

L J Ty P
5.92mm 2.54mm*4 5.92mm)
22.00mm

Figure 6.3.1.1 C4001 Radar Sensor Layout

71

- No. Name

-
x
a A W N

ouT

Check Footprint Dimension mil o No. Size

1 139.4 * 139.4
2 139.4 * 139.4
VIN 59.1*59.1
GND 59.1*59.1
RX 59.1*59.1
T 59.1*59.1

out 59.1*59.1

Figure 6.3.1.2 C4001 Custom Footprint

6.3.2 MPU-6050 Accelerometer - Custom Footprint

In order to obtain the exact physical dimensions and locations of pin headers on the
development board of the DFRobot C4001 Radar Sensor, we must first reference its
datasheet. Once the diagram and appropriate dimensions have been referenced from
the datasheet, we can begin to create a custom footprint to associate with pin headers
on the schematic. This will make sure our PCB design houses all its components
properly and keeps its dimensions within measurable standards. Below is a 5-pin header
that will serve as a placeholder in the schematic design, to then be associated with our
custom C4001 Radar sensor footprint in our PCB design.

Figure 6.3.2.1 MPU-6050 Layout

72

No. Name
VIN

VIN[e |
3_/§ scL
GND
SCL
SDA
INT]

-0

SDA

o o & w N =

INT

OO WN

Check Footprint Dimension mil v No. Size

65.7 *65.7

177.2*177.2
177.2*177.2
177.2*177.2
177.2*177.2
65.7 *65.7
65.7 *65.7
65.7 *65.7
65.7 *65.7
65.7 *65.7
65.7 *65.7
65.7 *65.7

Figure 6.3.2.2 MPU-6050 Custom Footprint

Since there is no documentation available online for the respective footprints of the
devboards that come with the radar and accelerometer sensors, we were led to create
our own custom footprints for our PCB design. This allows for the most optimal design
and generates simplicity in the final assembly of the PCB. The tradeoff of creating a
custom footprint for such components is that you lose time in the design stage but gain it
once it comes down to the assembly. It is a better practice to dedicate more time to the
PCB schematic and footprints in the design stage so that less problems can arise in the
assembly stage, where going back to the drawing board to tweak designs might not be
an option in a time sensitive setting.

6.4 Final Schematic - All Components Included

The final schematic brings all of the previous reference schematics and connects them
together as one. It will serve as the main documentation for reference when assembly
and PCB layout begin. This comprehensive draft ensures that every subsystem is
properly integrated and that all signal paths and power requirements are clearly defined.
By consolidating the individual modules into a single, cohesive diagram, the final
schematic helps identify potential conflicts or design issues before fabrication. This
document is essential for both the design team and manufacturers, providing a clear
blueprint to guide the entire build process and future troubleshooting.

The final schematic consists of two pages on the EasyEDA schematic and PCB design
software. The first page consists of the ESP32 MCU, its respective micro USB, power,
and communication circuits, MPU-6050 Accelerometer, C4001 Radar, and respective pin
outputs. The second page includes the power supply/converter for the 12V input that will
be seen by the cigarette lighter charger port which is standard in every vehicle. While

73

modern vehicles do not include the cigarette lighter anymore, all still have a 12V access
port. The final schematic and its two pages are depicted below.

T I b3 I E] I E T] I 3
SW3
o ESP-WROOM-32 Switch Circuit
LED i
= i e ||5“" 21 o SO0 115""’ zl o EN
g : 3 ey 2k = < S [k | L Soonr A
S dos £ . o ahD FET54N-11-05P
7] oy ! e aio Accelerometer ol
L B U
GHE 9-||}— on ﬁ]ﬂhn
R1%
/%% serial Connection °
2 e
| USBA Power Input ..., o B pg = .
- VBUS g) F L
[— use. o CP2102 Sgrial Converter 3w
& T BATTEGT USE_OP = i
o bz|b1| Da QAUFAD0V
| -, BT 1 i
wr fssﬂiunm‘ns GND 5 R
GND = 1 I 3
(el = * VoD C .
° ch_J_ce 4 VH
L o a 1HADOTS
o = caariwTa0R L |
GHD VBUS
T S .
Breakout Power Pins
o SRD-GVDC-SL-C = PZ254v-1%d)
axv o aho
z
j:ii Schematic Schematic1 3;":;: zg:mzz
PRI T Board SAFESIGHT r1 Page Main_Page
azv g Drawn
o H Reviewed SAFE_SIGHT o
:
g e Version Size Page 1 Total 2
@ EasyEDA V1.0 Ad EasyEDA.com
1 | i 1 3 | i 1 | [
Figure 6.4.1 Final Schematic - All Components
12V - 5V Power Supply/Converter
B!
10 22uH
CN1 G112 G13 N B - R15 .
5 I e B s Acin i T swer L 200 =5 50FT 2T 2B 220 T 10007 ©
‘TBO06-508-02BE ™ TPS566242DRLI
30ka
L
. GED L]
. = Create at 2025-04-21
Schematic Schematic1 Updale al_| 2025-04.21
Board Board1 Page P2
Drawn
of Reviewed SAFE_SIGHT)
Version Size Page 2 Total 2
@ EasyEDA V1.0 A4 EasyEDA.com
1 I 2 I 3 I 4 I 5 I 3
Figure 6.4.2 Final Schematic - All Components Pt 2

74

7. Software Design

The software design of SafeSight is crucial for its ability to interpret sensor data, make
decisions in real time, and deliver accurate feedback to the user. Our design process
involved mapping out various logic-based scenarios that the system might encounter in
real-world driving environments. These scenarios informed the development of control
algorithms, response mechanisms, and safety checks.

The system architecture is built around modular logic blocks, each responsible for a
specific function, such as traffic light detection, driver attention monitoring, and alert
triggering. Logic decisions are made based on sensor inputs processed through
conditional statements, thresholds, and decision trees. To clearly visualize how the
system behaves under different conditions, we created a series of flowcharts that outline
specific inputs, expected outputs, and system states.

7.1 Software Logic Introduction - Scenarios

Before an approach to coding any implementation of software design, we must first
consider the various scenarios our Safe Sight product will encounter on the roadways,
then create ideas of software implemented logic, and finally execute and implement
software to our design. This process requires careful anticipation of change and
modularity to ensure the system remains adaptable and scalable as new challenges
arise. Additionally, abstraction plays a critical role in isolating essential behaviors from
implementation details, allowing us to focus on high-level problem-solving without being
bogged down by unnecessary complexities.

7.1.1 Red-Light Scenario

The first scenario, the scenario that inspired our product, is the red-light scenario. The
red light scenario consists of the operator's vehicle stopped at a red light. Having two
outcomes, the driver of the vehicle housing our safe sight device will either react
accordingly in a timely manner to the switching of the traffic light from red to green, or fail
to react accordingly due to their attention being absent to the roadway. Now, if the driver
remains attentive in the scenario, our safe sight product will do nothing, for the driver did
not commit an attention infraction. However, if the driver fails to react to the changing
traffic signal, Safe Sight will activate an alarming tone and take a picture of the driver,
documenting the attention infraction’s date, time, and record media of the incident. A
logic flow graph is pictured below to demonstrate this scenario.

75

44 Red Light Detected
l Mo

< Car Stopped? ™

. ’
“ -
"
"
fes

Yes Green Light
detected?

Mo

Yes

0V
Reaction Time |
Interval

fes

X

_-".Dri\rer"'-, Mo ()
—_Aftentative? - HELL

Figure 7.1.1.1 Red Light Scenario Flowchart
7.1.2 Driver Distracted While Driving Scenario

Furthermore, another scenario where Safe Sight will be implemented is in the event of a
driver who is distracted while their vehicle is in motion. The driver’'s attention to the
roadway will be assessed based on their overall head posture. If the driver is looking
down, for example, texting and driving or changing the song on their stereo, they will be
flagged as committing an attention infraction, and Safe Sight will alarm the driver and
document the offense. This can be structured as software logic by using real-time data
from cameras and sensors to track head movements and compare them against
predefined thresholds for safe driving behavior. For instance, if the system detects a
downward gaze lasting longer than a set duration, it triggers an alert and logs the
incident in a database for future reference. However, if the driver maintains their
attention to the road with minimal and normal shifts in their overall posture, Safe Sight
will do nothing and remain silent. By employing machine learning algorithms, the
software can also adapt over time to recognize patterns of natural head movements
versus distracted behaviors, ensuring greater accuracy and fewer false positives. A logic
flow graph is pictured below to demonstrate this scenario.

76

Driver Detected

l

Vehicle in
> Motion?

Jj es

Driver _
- Attentative? -

‘ Time Interval |

" Driver . No .|)
7-._Aﬂentaiiue?_.-4’| Alarm

No

Yes

Figure 7.1.2.1 Driver Distracted While Driving Scenario

7.2 Application Design

When it came down to actually designing our application that is going to be used with
SafeSight. There were a lot of things that needed to be considered. We took into
consideration how we were going to connect to SafeSight in order to view photos that
are being stored on the Raspberry Pi. We also took into consideration how the Ul of the
app is going to look. We wanted an app that would represent our hard work on this
project. In this section, we are going to discuss how we designed our application, what
features it is going to entail, along with what our expectations are for the future with this
app and SafeSight as a whole.

7.2.1 Initial Design and Thought Process

Initially, we wanted an application to simply connect to SafeSight using the ESP32s or
the Pi’'s bluetooth. This will allow the user to access their photos that the Pi has taken of
them when they were distracted. Along with this, we wanted an overall driver report, live
camera feed, profile page and bluetooth device search. Initially, we wanted the user to
be able to log in with a username and password to access their SafeSight device.

77

However, we thought about what we wanted this app to encompass and decided that we
did not want to go that route due to the complexity of databases. We wanted to make
something super user-friendly. Almost like how other cameras like the Insta360 camera
or the GoPros have it where all you have to do is either connect to their network or
bluetooth, and you can view and edit everything that is on the camera. Since everyone
will have their own, unique device, there is no need to create a user database for the
app. This will allow us to focus on each tab of the app individually rather than focusing
more on databases, which is irrelevant for this project. Below, you will see the
breakdown of each screen and tab in the app with their designated functions.

7.2.2 The Start Screen

Below is the Ul for the login screen, as stated before, my original idea was to make this a
login page with a sign in for google, apple, and a .edu sign in. However, we soon
realized that this was not necessary due to the uniqueness of the device. With your very
own bluetooth signal, your device is unique to you, making it secure with no need for a
username and password authentication. Using SwiftUl, we created this wonderful,
user-friendly start screen with a button that says “Connect Your Device”. This was
created using SwiftUl's ‘Z-Stack’ and ‘V-Stack’ view blocks which allow for us to stack
images and buttons either in front or behind each other in a nice vertical column. When
you push that button in the middle, the app will then take you to another screen where it
searches for bluetooth devices using your phone's bluetooth antenna. This will allow the
user to connect to their device and have a welcoming experience when they go to view
the content on their SafeSight module.

Figure 7.2.2.1 Appliation Start Screen

78

7.2.3 Bluetooth Device Selection

After the initial welcome screen, users are guided to the Bluetooth Device Selection
screen, where the app will remind users to connect to the SafeSight network. To do so,
users will go into their settings app and connect to the SafeSight network like any other
network that they typically connect to. This connection comes from the Raspberry Pi’s
hotspot that will transmit data over HTTP every 5 seconds once connected. After that,
the user will press “Continue” on this prompt to then take them to the “Driver Report”
View. This screen was built using a simple alert that triggers a boolean variable that
keeps track if the user is connected. Below is the prompt for checking your connection.

Check Wi-Fi
Please make sure you are connected

to SafeSight Wi-Fi before continuing

Cancel Continue

Figure 7.2.3.1 Bluetooth Device Selection Screen
7.2.4 The Home Screen

Once the user has selected their SafeSight device, they will be guided to the Home
Screen. From there, you will see three tabs: Driver Report, Photo Gallery, and Profile.
This view will allow the user to see all of the data that their SafeSight Device has
collected throughout their previous 10 Trips. Since these views are not complete yet, you
will see what they currently look like, along with descriptions on what changes are to
come in the near future.

79

7.2.4.1 The Home Screen: Driver Report

In this tab, the user will be able to see the statistics from their past 10 trips. It will give a
list consisting of the number of distractions per trip, along with an average number of
distractions for the user. This will allow the user to be mindful of how often they are
getting distracted while driving, along with individual reports on each and every trip.

In the future of this project, we will add a table with the distractions per trip that will allow
the user to click on each and every trip to see the breakdown of that particular trip. We
will also possibly add a nice pie chart that will show the overall time they are paying
attention vs the amount of time they are distracted while driving. These future updates
can be done by using built-in SwiftUl components such as List (for the table), Navigation
Link (to make the table reactive), and SwiftUICharts (to make a pie chart). Below, is what
currently exists in the Ul development for this tab view.

Driver Report:
Previous 10 Trips:

Distractions

8
1

5
1

3
1

6
3
2
2

Figure 7.2.4.1.1 Driver Report Tab View

7.2.4.2 The Home Screen: Photo Gallery

For this tab, we plan on integrating a collection of photos that the device has taken of the
user being distracted. This is going to be one of the main tabs of the application because
it is going to probably be the most amount of work due to the sending and receiving of
image files from the Pi to the phone. However, this is the main purpose of SafeSight, to
show the world how distracted everyone is while driving.

80

In future updates, there will be a window on top of a Z and V Stack. This will be all of the
photos taken by the Raspberry Pi camera. From there, the user will be able to select,
view, and even share the photo with friends or family. If the owner of the vehicle was
Uber for example, they could even keep track when their drivers get distracted by giving
them an attention score. This would let users of Uber know if the driver that is picking
them up is a good driver. So far, it looks like the photos will be transferred via raw data
from the Pi to your iPhone. The image will be encoded as small chunks of raw data
(using HTTP) and then the iPhone will reconstruct the image to properly display it.

<

Photo Gallery

Figure 7.2.4.2.1 Photo Gallery Tab View Current State

81

7.2.4.3 The Home Screen: Profile Page

Your Driving Profile:

& Safety Score (Out of 100): 34
P

& Total Trips Taken: 15

&~ Total Distractions Recorded: 43

N
& App Version: 1.0.0.0

Figure 7.2.4.3.1 Profile Page Tab View

Once the user has viewed all of the information from the Raspberry Pi, they will be led to
the Profile Page tab. In this tab, the user will be able to view their safety score, which is a
percentage of the trips taken and the total distractions recorded. This data is read from a
JSON file which gets edited as the user drives on the Pi. A trip starts when the Pi turns
on (or when the car turns on) and it ends when the Pi turns off (when the car shuts off).
Below is the profile screen with some data being read from the Pi.

82

8. System Fabrication/ Prototype Construction

This section is where we will be showcasing the system fabrication into a PCB. PCB is
short for printed circuit board and it is vital when creating a robust and size conscious
system to house all necessary electronics. PCBs are the cornerstone of all commercial
electronics products. They are seen in technology ranging from your remote control race
car to supercomputers that run extensive computations. Just as there are many ways to
apply a PCB in electronics, there are just as many methods in designing a PCB. Printed
circuit board software that many college students are exposed to are CAD softwares and
they include Fusion 360, Autodesk EAGLE, KCAD, and EasyEDA. The software that will
be implemented in our SafeSight project is EasyEDA for its accessibility and
compatibility by allowing design collaboration, LSCS library access, and access to
designing through a browser window. There are many steps in the design process to get
a simple schematic to a finished PCB layout, and choosing the appropriate software will
provide the appropriate foundation for flawless execution.

Beyond the selection of design software, the journey from concept to a finished PCB
involves a structured, multi-step process that transforms an idea into a tangible,
manufacturable product. The process typically begins with the creation of a schematic,
which serves as the electrical blueprint for the board’s functionality. This schematic is
then translated into a physical layout using CAD tools, where component placement,
trace routing, and design rules are meticulously defined to ensure optimal performance
and manufacturability. Additional steps include designing the board’s stackup for signal
integrity, inserting drill holes for component leads and vias, and adding labels or
reference designators for assembly. Once the layout is finalized, manufacturing files
such as Gerbers are generated, which are then used to fabricate the actual PCB.
Throughout this process, close collaboration with manufacturers and adherence to
industry standards are essential to avoid costly revisions and ensure the final product
meets all functional and reliability requirements.

8.1 PCB Design - Organization

Once a schematic is finalized in the software of choice, the next step is to convert your
finalized schematic into a PCB design. In EasyEDA, once we first convert our schematic
to PCB design, the orientation of components may show themselves as quite confusing.
However, the first order of business is to lay out the circuit boards' dimension parameters
and then organize all the components within this space. Every design will differ, however
there are principles to follow. For example, in our SafeSight design, we will be using
micro USB ports, buttons, and a wire terminal and will naturally place these components
on the edge or corners of the PCB away from surface mounted components to allow for
easy access and isolation from potential shorts. The organization step is vital and must
be executed at the beginning of the PCB design because any changes in location once
the routes are made will result in rigorous problem solving in order to accommodate any
changes in component placement. Below is an example of our layout before and after
routing is done. We reorganized the radar footprint before routing so that it could be
isolated away from components and be seated next to the accelerometer on the PCB.

83

W RONONCN S

DHllio] g
—]wlﬁl—l

Figure 8.1.1 PCB Organization

8.2 PCB Design - Routing

After our components are laid out on our PCB in an appropriate order for the project
application, we must move on to the next stage of PCB design: routing. Routing on a
PCB consists of running wires along the top and bottom layers of the board to their
respective pads. No routes can intersect with one another, so we use Vias as a method
to transfer surface running routes to bottom running routes. This is the main method of
preventing overlap or intersection of routes which will result in improper performance
when electronic testing is made. The red routes represent the surface layer of the PCB
in this picture below, and the blue routes represent connections running along the
bottom surface of the PCB.

Figure 8.2.1 PCB Trace Routing

The last and equally important stage for running routes is the distance between parallel
running connection routes on the PCB. If a pair of routes is running too close to one
another in a parallel orientation, they run the risk of parasitic capacitance. Parasitic
capacitance, also known as stray capacitance, refers to the unintended and unavoidable
capacitance that arises between conductive elements in an electronic circuit or
component due to their proximity. In PCB design, parasitic capacitance manifests
between adjacent traces, layers, or components, often causing crosstalk, signal integrity
issues, or unintended resonant circuits. While impossible to eliminate entirely, its effects

84

can be mitigated through careful layout practices like avoiding parallel routing and
optimizing trace spacing.

8.3 PCB Design - DRC and 3D/2D Verification

Once our components are organized on our PCB, the dimensions of the board are set to
their respective parameters, and all the routing is done between pads, we must complete
the last step which is to do a DRC check and verify that the 3D and 2D CAD models fit
our standards for the final product. The DRC check stands for Design Rule Check and
verifies all electronic routing connections, making sure they are spaced from one another
properly and that all connections are just. If the DRC flags any suspecting connections it
will notify the user of the Design software and advise a fix before file export for PCB
fabrication. Below is the verified DRC check of our SafeSight design and the respective
3D and 2D models. Our design is verified in the DRC and no potential problems with
routing or component placement have been flagged by the software.

Design (D) Route (U) Layout (O) Tools (T)
\] Import Changes from Schematic Alt+l ¢
1 5% Update PCB to Schematic (
Update Place and Route from Reuse Template...
Design Rule...
DRC Check DRC
DRC Check DRC(Custom)...
Clear Errors

Real-Time DRC

Check DFM...

U? Annotate Designator...

Figure 8.2.1 Check DRC Option

Check DRC Clear Errors

© All(0)

X Library @ Log Device Standardization DRC Find Result

Figure 8.2.2 DRC Completion

After completing the DRC check, the final verification stage integrates both electrical and
mechanical validation to ensure the design meets functional and physical requirements.

85

Modern PCB CAD tools like Altium Designer, KiCad, and EasyEDA enable simultaneous
3D/2D validation, allowing designers to inspect component clearances, enclosure fit, and
thermal performance through automated collision detection and layer stackup analysis.
For example, 3D visualization can reveal hidden issues like protruding components
interfering with mounting points or inadequate airflow around heat-sensitive parts.

[- mEm [0O0o0o0O0O0OOOOOO 0°°°°°°0
£0 en

L] B] .

A e = ANRRNNRRNNANEE: S

@m . 6
. 000000 .
) I

Ve

N/

S
T

‘En

m
i

¥
i

cié

"
a

8n

Figure 8.2.3 Modern PCB Cad Layout

Due to the fact that we connected pin headers in the schematic to custom footprints for
our sensor development boards, the software associated 3D versions of pin headers in
the place of the 3D representation of the sensor development boards. This will not be an
issue when it comes to PCB assembly and is only a simple model in the 3D diagram.
The final PCB after assembly will not contain those two extra rows of pin headers at the
end, instead the development boards for the sensors will take their place. Below is the
3D model for our finalized PCB design in EasyEDA.

T
ﬂ";g:f’:" Lo'n'r‘| =

:

I_vwr-r-r-llvrvwrm-rm-r'l"r___"

Figure 8.2.4 3D PCB View

86

9. System Testing and Evaluation

Throughout the physical build of the project, we decided to take steps into how the
construction of the system will be built by testing individual components one by one prior
to finalizing the project in its entirety. With this, we went ahead and ordered the mmWave
radar from DF Robot, the MPU-6050 inertial sensor, ESP32 development boards, and
the raspberry pi in order to effectively test the components for which we intend to
establish a communication protocol between the components in our demonstration.

9.1 Radar Integration

With the development of the project, the hardware components purchased needed to be
tested in order for the communication protocol between the individual IC’s to function
accordingly with the MCU (ESP32). In order to access the Radar we went ahead and
utilized the Arduino IDE to directly communicate with the ESP32 and direct the pins for
the R and TX terminals.

@file
@brief
@copyright

@author
@version
@date

© Vo ~NOUWUL & WK

=

This section of the documentation block at the top of the sketch file specifies the name of
the file, in this case “mRangeVelocity.ino” which is an arduino sketch. The “@brief’ gives
a short description of the sketch, where the radar measurement demo is stored for the
DFRobot C4001 mmWave Radar. Giving our credits to the copyright owners in the next
line and then the MIT License for the permissive open-source license we used to access
the code template for the DFRobot.

In this code we went ahead and used the DFRobot _C4001.h library for communicating
correctly with the C4001 radar module.

#ifdef I2C_COMMUNICATION
DFRobot_C4001_I2C radar(&Wire, DEVICE_ADDR_®);
#else
// Use UART: defines how radar communicates with ESP32 or Arduino
DFRobot_C4001_UART radar(&Seriall, 9600, 16, 17); // TX = GPI0O17, RX = GPIOlé
#endif

In order to communicate with the ESP32 via serial communication, we used the pins 16
and 17 (RX and TX, respectively) to establish the Serial1 connection with the ESP32.

void setup() {
pinMode(testPin, OUTPUT);
Serial.begin(115200);

87

This section of the code starts the USB serial port for debugging, sets the testPin (GPIO
19) as output in order to trigger the response of the radar throughout the whole system.
In this case we used a red LED in order to demonstrate the trigger’s effectiveness in this
prototype system.
while (!radar.begin()) {
Serial.println("NO Devices !");
delay(1600);
}

Serial.println("Device connected!");

In order to initialize the radar sensor, we have this while loop operating in the code to
print out the serial monitor to determine when our radar has been initialized. After
several boot-up attempts, the radar typically takes around 20 seconds to initialize within
the system on a 3.3V activation voltage.

In the developmental stage of the radar’s integration, we went ahead and used the
default mode of the radar to be “eSpeedMode” where it detected moving objects along
with their speed and range. While this may be useful for walking speed, object approach
and security detection, it may deem a bit ineffective for the purposes of our radar use
within this system, thus we went ahead and changed the operating mode to be
eDistanceMode in order to track distance on both animate and inanimate objects.

9.2 MCU-6050 Integration

The MCU-6050 is the inertial sensor we decided to use within this system. With the
MCU-6050 we decided to go with 12C communication with the Wire.h command in the
header file. Alongside that command we have other header file inclusions, for example to
provide a unified sensor abstraction layer we implemented the Adafruit_sensor.h file
and to ensure we are utilizing the accelerometer and gyroscope within the module, the
Adafruit_MPU6050.h file:

#include <Adafruit_MPU6050.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>

Again, like we have done in the previous hardware fabrication, we enabled the digital
output pin with testPin this was used for toggling a signal (possibly for debugging or an
external indicator like an LED as we implemented in the demo videos. Mpu is what we
will use to interface with the MPUG050.

const int testPin = 19;
Adafruit_MPU6050 mpu;

The next portion of the fabrication process involved the initialization of the sensor. This
included the initialization of the 12C bus with custom SDA and SCL pins, which was
allowed by the ESP32 alongside the explicit definition of what pins we were intending to
use with this bus.

Wire.begin(21, 22); // SDA = 21, SCL = 22 for ESP32

88

Then, we configured the testPin as an output and set it high initially. This began the
serial monitor at 115200 baud and waited for it to be ready. This was not strictly
necessary for the ESP32 but it was a safe measure in order to ensure we knew exactly
what to expect with the components.

Serial.begin(115200);
while (!Serial)
delay(10);
The next block of code was focused on initializing the MPUG6050 and if this were to fail,

the loop lasts forever, printing an error message to the user in order to fix any
connections on the hardware side if needed.

Serial.println("Adafruit MPU60G50 test!");

if (!'mpu.begin()) {
Serial.println("Failed to find MPU6050 chip");
while (1) { delay(10); }
by
Serial.println("MPU6850 Found!");
The next section of this code is to configure the sensor in order for us to extract accurate
and precise data from the sensor. First and foremost, we set the accelerometer range to
+/- 8g (gravitational units). The 8g gravitational unit setting is a good start to the
fabrication process as the more range we add, the less sensitivity we get. With the

ambition of this sensor being in the automotive space, it is good for us to fine tune this
value when presenting in a more applicable case scenario.

mpu.setAccelerometerRange (MPU6050_RANGE_8_G);

switch (mpu.getAccelerometerRange()) {
case MPU6050_RANGE_8_G: Serial.println("+-8G"); break;

by

Next, we went ahead and defined the gyroscope range to be +/-500 degrees per second.
mpu.setGyroRange (MPU6050_RANGE_500_DEG) ;

In order to reduce high-frequency noise associated with the environment around the
sensor initially in the fabrication process, a digital filter was introduced with a bandwidth
of 21 Hz.

mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);

Acquiring this data is crucial in this process, to make sure we are getting accurate
readings and that this sensor will be applicable to the intended use we have. Thus,
reading the information is a big part of this process.

sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);

89

The data acquired here is the accelerometer data, the gyroscope data, and the
temperature data (a, g, temp). Finally in this short drafted code, we toggled the pin 19 for
HIGH of 10ms and LOW for 10ms, creating a 20ms cycle (50Hz pulse). This was used
for debugging, triggering, syncing with another sensor and device, and testing the
responsiveness of the output. The ESP32 MCU communicated with the Adafruit
MPUG6050 sensor over the I2c interface as we described above through pins GPI1021
and GPIO22. The firmware initializes the sensor, sets up the desired sensitivity ranges
for the accelerometer and gyroscope, and applies a digital low-pass filter at 21 Hz to
minimize noise. Sensor data is acquired using the getEvent() function from the Adafruit
Sensor APl and output via the serial monitor at 115200 baud. Our test pin (GPIO19) is
toggled at regular intervals to provide a visual or logic-level signal, confirming the
program’s execution and synchronizing with external devices.

9.3 Radar, Accelerometer, and Raspberry Pi integration

The final integration for these arduino sketches was to integrate both components: the
MPUG050 accelerometer and the DFRobot C4001 mmWave radar sensor with an
ESP32 microcontroller using both the 12C and UART interfaces. This combination will
transmit data centered around distance and motion, communicating with another device
via UART?2 for external signaling such as the LED and piezoelectric buzzer.

#include <Adafruit_MPU6050.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>

const int testPin = 19;
Adafruit_MPU6050 mpu;

In this block of code we are providing the functions to communicate over 12C (wire.h),
interface with the MPUG6050 sensor from the Adafruit, and to interface with the DFRobot
C4001 radar sensor via UART. In order for the circuit build to be functional on a
breadboard / development board, we defined the connection ports within the code:

#idefine ESP_RX2_PIN 4

#define ESP_TX2_PIN -1

#define I2C_SDA 21

#define I2C_SCL 22

#define RADAR_RX 16
#define RADAR_TX 17
#define LED_PIN 2

These configurations include the UART2 on GPI04, Radar sensor on GP1016 (RX) and
GPIO17 (TX), 12C on GPI021 (SDA) and GPI1022 (SCL) with the built-in LED on GPIO2.
The object instantiations include the MPU, which handles MPUG6050 sensor operations,
Radar, which manages C$))! Radar communication on Serial1, and PiSerial which opens
an extra serial channel on UART2 for external communication.

Adafruit_MPU6@50 mpu;

DFRobot_C4001_UART radar(&Seriall, 9600, RADAR_RX, RADAR_TX):
HardwareSerial PiSerial(2);

To effectively transmit data to our natural senses alongside the external IC of the
Raspberry Pi,the setup prior to the body of the code is imperative. Here we set up the

90

LED pin as output to turn it off, we initialize the Serial (USB) for logging and set up the
UART2 (PiSerial) to listen on GPIO4.

pinMode (LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);

Serial.begin(115200);
PiSerial.begin(115200, SERIAL_8N1, ESP_RX2_PIN, ESP_TX2_PIN);

The 12C and MPUGO050 Initialization begins with the 12C communication with defined
pins. This ensured the MPUG050 initializes with +/- 8G accelerometer range, +/- 500
deg/s gyroscope range, and 21Hz digital filter to reduce high-frequency noise.

Wire.begin(I2C_SDA, I2C_SCL);

mpu.begin();

mpu.setAccelerometerRange (MPU60560_RANGE_8_G) ;

mpu.setGyroRange (MPU6050_RANGE_500_DEG) ;
mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);

The C4001 radar initialization waits for the radar sensor to full initialize, then configures
the radar detection mode and thresholds. This sets the sensor to exit mode, defines
detection threshold values, and enables fretting detection which is needed to be
sensitive to small movements.
while (!radar.begin()) {
Serial.println("Radar not detected!");
delay(1000);
Y
radar.setSensorMode(eExitMode);
radar.setDetectThres(11, 1200, 10);
radar.setFrettingDetection(eON);

From here we check to see if the data is available on UART2 from the raspberry pi with
an if statement which will give us continuous execution while the device is running.

if (PiSerial.available()) {

Grabbing the sensor readings includes the data on the accelerometer, gyroscope, and
temperature data from the MPU6050. This target range from the radar sensor (in cm or
mm depending on configurations) will be good data to reference when fine tuning is
done prior to the final fabrication of the device on a PCB.

mpu.getEvent(&a, &g, &temp);

float range = radar.getTargetRange();
The LED control and serial logging is then defined in order for us to see that the
communication between devices is behaving as we expect. If 0x01 is received over
UART2, then the LED will turn on, if 0x00 is received, the LED will turn off. This lets an
external system control the ESP32’s onboard indicator. In this case, the external system
is the Raspberry Pi.

91

uint8_t c¢ = PiSerial.read();

if (c == 0x01) {
digitalWrite(LED_PIN, HIGH);
Serial.println("Got 1 > LED ON");

}

else if (c == ©@x00) {
digitalWrite(LED_PIN, LOW);
Serial.println("Got © > LED OFF");

}

Finally, before executing the code and witnessing the sensor values, we need to ensure
that we are receiving real-time sensor readings from the ESP32 to the serial monitor.
This is useful for us as we are debugging or logging physical activity and distance within
this system. To ensure the fine tuning process is as prepared as possible for ideal
system performance in Senior Design 2, it is imperative for these values to be
communicated effectively.

Serial.print(" Range: "); Serial.print(range);

Serial.print("Accel X: "); Serial.print(a.acceleration.x);

This code demonstrates a multi-sensor integration on an ESP32 platform using 12C and
UART simultaneously. With the MPUG6050 accelerometer/ gyroscope capturing motion
data, the C4001 mmWave radar detecting distance and movement, and a PiSerial
interface allowing the Raspberry Pi to control onboard functions like LED and trigger
readings. All the data is then logged to the serial monitor, enabling both real-time
feedback and analysis.

92

10. Administrative Content

In this chapter, we will go over planning our budget, milestones for senior design 1 and
2, and we will show the work distribution on who is primarily doing what in this project.
We will go over the reasoning for all of these choices, along with plans for the future to
help make sure we are moving forward efficiently to complete this project.

10.1 Budget and Financing

As stated in Chapter 4, one of the biggest challenges for this project is the funding
generated from senior year students not working in the industry. With that being said,
initially we began with a maximum budget with the initial BOM being under $300 which
would evenly distribute the cost per member of this team to be $100. But after some
requirements to meet constraints of regulations, functionality, adjustments to the
hardware, and performance benchmarks, some of the costs ended up exceeding the
initial proposal of ideas. For instance, during testing we needed more ESP32 boards in
order to test different subsystems in the project. This led to the cost of a microcontroller
unit to be multiplied by 3 in order to rely on other microcontrollers for simultaneously
testing subsystems at the same time. The cost for PCB boards will also be more than
anticipated as we will adjust the sizing and the components accordingly.

K42 4 fr | =SUM(L2:L39)
A 8 c o 3 F]) 3 L
Quantity Comment Designator Footprint Value [Part Mar Supplier Part Supplier Lescp Overall Price
5 100nF €3,04,C6,C10,C11 co80s 100nF GCM21BR71H104KA37K mu 3011704 Losc $ 041 $ 2,05
3 220F 5,C8,C9 co8os 220F CL21A226MPONNNE SAMSUNG(=) 29277 Losc $ 018 $ 054
1 10uF <] co8os 1007 €52012X7R106M100NRE SAMWHA(Z#1) c5189822 Losc $ 04a § 0.44
2 10uF a3 cosos 100F GRM21BR61E106MA73L muRata(F) 391262 Losc $ 057 $ 114
1 100nF c1a cosos 100nF CCOBOSKRX7R9BB104 YAGEO(EIES) ca9678 Losc $ 045 $ 045
1 33pF s cosos 33pF CCO805JRNPO9BN330 YAGEO(EIES) c107115 Lesc $ 062 $ 062
4 220F €16,C17,C18,C19 cosos 220F LMK21281226MGT TAOYUDEN(AYS) C92814 Losc $ 063 $ 252
1 100nF c20 co80s 100nF CCOBOSKRX7R8BB104 YAGEO(EIE) C519981 Lesc H 056 $ 056
1 T8006-508-028E o CONN-TH_2P-P5.08 TB006-508-028E 9900020622 Losc $ 021 $ 021
3 LESDSD5.0CTI6 01,02,03 SOD-523 112:-W0.8:L51.(LESDSDS.0CT1G LRC(FILEL) 383211 Losc $ 091 $ 273
1 8AT7607 04 S0D323 118 W1.3152.! BAT7607 DIODES(¥ &) 124187 Losc $ 040 $ 040
1 Radar Pins H1 SENO609 C4001 mmWave Radar Pins XFCN(7¢ %) 492404 Lesc $ 053§ 0.53
12200 [ty INDSMD_L7.1:W6.6 2.2uH MDA7030-2R2M KOHERelec(F42%) 2847481 Lesc $ 055 $ 055
1 KT-0805Y LeD1 LEDO8OS-R-RD KT-0805Y KENTO 2296 Losc $ 057§ 057
2 $58050-G(RANGE:120-200Q1,Q2 SOT-23:3 (2.9-W1.3-P19 $58050-G(RANGE:120-20(C) (T 75 e/) C164886 Lesc $ 081 $ 162
2 240 RLRE R0805 2% FRC08051202 TS FOJAN(E 1) 2907315 Losc $ 013 $ 026
4 10k R2,R3,R9,R12 R0805 10k0 FRC0805J103TS FOJAN(E H) 2930231 Losc $ 011 $ 044
1 47.5k2 RE RO80S 47.5k0 FRCO80SF4752TS FOIAN(E) €2999454 Lesc $ 017 $ 017
122160 R7 RO805 210 CRO805FX2212ELF BOURNS 204311 Lesc $ 055 $ 055
200 R10,R11 RO80S oa FRCO805P000TS FOJAN(E) 2007288 Losc $ 013 $ 026
1 100k R13 R0805 100k2 0805W8F1003TSE UNI-ROYAL(EF) C149504 Lesc $ 018 $ 018
1143k R14 R0805 14.3k0 ARGOSFTC1432N Viking () 218338 Losc $ 043 s 043
122060 RIS R0805 220k RCOBOSFRO7220KL YAGEO(EIE) 137568 Lesc $ 021 $ 021
1 30k R16 RO805 30k 0805WB8F3002T5E UNI-ROYAL(BL7%) 17621 Lesc $ 019 $ 019
2 PTSGASSHSOSMIR92LFS SW1,5W2 KEY-SMD_4P-L6.0-W6.0-P PTS645SHSOSMTRO2LFS C&K 221869 Lesc $ 035 $ 070
1 ESP-WROOM-32E u2 CCOMM-SMD_ESP-WROOM ESP-WROOM-32E DOIT(Pa 1% 5X) €19949066 Lesc $ 294§ 2.94
1 USB-UARTConvertor U4 USB-UART Convertor SKYWORKS/SILICON LABS(C964632 Lesc $ 190 $ 190
1 AMS1117-3.3 '3 UMW(RAESH) 307222 Losc $ 020 $ 020
1 Accelerometer Pins v P HANBO(S18) 6332199 Lesc $ 052 $ 052
1 X6512WV-14H-C60D30- US X6512WV-14H-C60D30-E XKB Connection(P BI £ 5242247 Lesc $ 100 § 1.00
1 X6512WV-13H-C60D30-E U9 B X6512WV-13H-C60D30-E XKB Connection(sPEI 2.4 C5242246 Lesc $ 093 $ 093
1 TPS566242DRLR u10 SOT-666-6_11.6-W1.2-P0, TPS566242DRLR TN OE) 5219277 Lesc s 049 $ 049
1 Micro UsB uss1 MICRO-USB-SMD_105017 Micro UsB MOLEX c136000 Losc $ 163§ 163
1 Raspberrypi 5 8GB Raspberry Pi $ 9029 $ 90.29
1 MPU-6050 Adafruit Adafruit $ 1295 $ 12.95
1 C4001 Radar DF Robot DF Robot $ 1390 $ 13.90
1 CameraV2 Module Raspberry Pi $ 1235 $ 12.35
1 Active Cooler Raspberry Pi $ 1499 $ 14.99

Total: B 17241

Total: | $ 172.41 |
Figure 10.1.1 Total Money Spent so Far

10.2 Milestones for the Project

Throughout the semester, it was important for us to approach the project in a manner
that will be reasonable and achievable to accomplish within the span of 2 semesters, or
roughly 7 months. The first half of this time frame dictated a bunch of research,

93

collaboration, critical thinking, and reason prior to finalizing the idea we wanted to
approach for this project. Given that many of the technologies already exist in the world,
making a project with a limited budget was achievable as the engineering has already
been implemented in the real world. The SafeSight device came to the minds of 3
engineering undergrads as we analyzed a real world problem, reasonable achievements
with proper research, and achievable in the time constraints of two semesters.

10.2.1 Senior Design 1

In this semester, we attacked the idea head on with proper ideas for which this project
will be able to achieve. In the thought process expressed in the first 2 chapters of this
documentation, we established that the SafeSight device will be able to detect when a
driver is distracted on the road when commuting from destination A to destination B,
notify the driver that it is time to proceed with the flow of traffic, identify proximity ranges
when the driver is parking with a “Parking Mode” activated with a switch in the system,
have crash avoidance signals to drivers operating the vehicle at high velocities when
there is a detected stationary object ahead at a range of about 30 meters. With all of
these ambitions it is important to select the right hardware, make the purchases and
execute testing to ensure the system will be compatible with the dimension restraints,
engineering accuracy, and system robustness. These and many other considerations
were kept in our minds as we conducted the research presented in chapter 3 of the
report.

Senior Design 1 provided the development of a theoretical software and hardware
diagram where the components will be communicating with one another via bluetooth,
app development code, and hardware wiring with protocols such as 12C and UART.
These diagrams are expected to be done and completed in the coming semester of
Senior Design 2.

10.2.2 Senior Design 2

For this semester, we attacked the rest of the objectives from SD1. First and foremost,
the PCB layout was finalized in order for us to arrange the components accordingly for
the device to fit the physical constraints pointed out throughout the report. Constraints
like size and weight in order to operate in an area where the driver’s visual and auditory
senses are not taken away from operating a moving vehicle. The hardware selected
proved to be meeting the functionality spec we need it to for the final fabrication of the
device, we would need to update the documentation for newer hardware upgrades we
seem fit when we test and tune the functionality of the device in order to achieve the
appropriate needs of a dynamic traffic environment. This would also bring us to the next
milestone where we soldered the components accordingly on the PCB board where we
need input headers, the MCU, resistors and capacitors and external IC’s we will be
running the CV modules on in order to ensure that the communication remains
consistent with our final product. Below is a chart with milestones for Senior Design 2
alongside milestones met with Senior Design 1.

Table 10.2.2.1 Senior Design 1 and 2 Milestones

94

Senior Design 1 Milestones

Senior Design 2 Milestones

Conducted research on relevant technologies and
real-world feasibility

Finalized the PCB layout to meet physical and
functional constraints

Collaborated to define a practical, achievable
project within a 2-semester time frame

Ordered and soldered components onto the custom
PCB (MCU, ICs, headers, passive components)

Identified and defined the problem statement
(driver distraction and crash avoidance)

Tested and validated each component’s
functionality (especially radar, MPU6050, CV
modules)

Finalized project idea: SafeSight device

Integrated hardware onto a compact form factor
suitable for use inside a vehicle

Outlined device features: distracted driver
detection, parking assist, forward collision
warning, etc.

Replace or upgrade hardware if it does not meet
spec; update documentation accordingly

Selected appropriate hardware based on
functionality and budget

Begin testing communication protocols (12C,
UART, Bluetooth) in real hardware configuration

Created initial hardware and software
architecture diagrams

Implemented Computer Vision modules and
optimize for real-time execution on selected
hardware

Proposed communication protocols: 12C and
UART

Ensured seamless communication between
subsystems and software modules

Began preliminary app design for mobile
interaction with the SafeSight device

Finalized and integrated the app interface with the
physical system

Prepared for physical prototyping phase by
completing design documentation and diagrams

Conducted full system integration, real-world
testing, and performance validation in a driving
environment

95

10.3 Table of Work Distribution

Below is the table of work distributions. Since we have one computer engineer and two
electrical engineers on this project, we are dividing the work in each person's strong suit.
The computer engineer (Matthew) will take on a majority of the coding and software
development, while the two electrical engineers (Mahyar and Albert) will take on a
maijority of the hardware assembly, as they are more knowledgeable in that sense. This
will help make sure that everyone does what they are more knowledgeable in, while
helping others to make sure this project gets done efficiently.

Table 10.3.1 Work Distribution Table

MPUG050 Raspberry PCB App Website Device
Pi Development Development Intercoms

Albert Albert Mahyar Mahyar Matthew Matthew Albert
Primary Lougedo | Lougedo Mahthabfar | Mahtabfa | Carvajal Carvajal Lougedo,
r Matthew
Carvajal,
Mahyar
Mahthabf-
ar
Secondary Mahyar | Mahyar Matthew Albert
Mahtabf | Mahthabfar. | Carvajal Lougedo
ar,
Matthew
Matthew | Carvajal
Carvajal

96

11. Conclusion

The SafeSight project not only represents an innovative response to the growing issue of
distracted drivers, but it reflects the knowledge embedded in three engineering
undergraduates who spent the last 4 years of their life learning how to develop such a
technology. This project is a testament of what thoughtful, well organized undergraduate
engineering can accomplish over the course of two semesters. The objective from the
very beginning was to create a device that can be portable, help humanity by increasing
efficiency through daily commutes, and keeping more people safe when commuting.
This project incorporates many different technologies such as a radar sensor, computer
vision, accelerometer, LED lighting, piezoelectric buzzers, web development software,
wireless connections, PCB designs and many more. Throughout the recent couple of
months passed, we have focused on the project ideation, feasibility studies, hardware
and software research, and the overall architecture of how this system was to be
integrated. Taking into account many constraints and factors to ensure that the vision we
had in our first meeting can one day be a reality. At it's core, SafeSight was born from
the realization that distracted driving is a growing and fatal concern. The presence of
smartphones and other attention-diverting scenarios has fundamentally lost the faith we
see in everyday commuting, requiring new safety features in vehicles. This in turn results
in more cost to the vehicles being released every year. In recognition of this social shift,
the team identified the problem and proposed a fun solution to develop and implement
into vehicles. This mission to empower drivers with immediate feedback on
unconventional behaviors is to reinforce long-term habits that promote attentive
responsibility behind the wheel.

Throughout this semester, we have approached this project, initially, with methods.
Starting with the identification of a problem and then leading with hypothetical scenarios,
it all began with a drawing board. Whether the driver was an older subject or a new
driver, the safesight technology had to hold everyone to the same standard. With this
comprehension approach, we needed to understand what the limitations were for us
alongside a literature review of current commercial technologies that can solve all of
these scenarios. The early phase introduced a new foundation of technical knowledge
as the research began after the agreement on the project’'s functionality. Thus, as the
first two weeks took off, the technical knowledge being gathered led to informed decision
making on hardware, communication interfaces, sensor compatibility, and computational
resources. Each subsystem we decided to use, from the MPU6050 accelerometer to the
ESP32 microcontroller, was selected for the specific ability and compatibility it brought to
the system idealized from the beginning. With the decision process came the emphasis
on modularity, ensuring that each component of the system could be independently
tested and verified, in order to track errors when fine tuning the system. This allowed us
to develop a system that is maintainable for the time being, and which in any case allot
room for improvement if deemed necessary.

In the lens of software, we took significant strides in ensuring that the SafeSight
computer vision functionality was working properly. The use of algorithms such as
OpenCYV for facial orientation detection, object classification and environmental analysis
has proved the technical feasibility of our goals. With the computational power of the
Raspberry Pi handling computationally intensive CV tasks, the work from the rest of the
system can be a bit off-loaded, allowing the system with the designated components to

97

operate effectively alongside the Pi. This dual processor design allows for each unit to
operate within an optimal range without the reduction of performance offered from each
subsystem.

On the subject of communication protocols (namely UART and 12C), we established
these protocols across different hardware components within the prototype development.
This intentional selection was to ensure the system compatibility and stability. For
instance the ESP32 had many limitations for the amount of pins used to
intercommunicate hardware, thus some of the hardware chosen needed to be
adaptable, meaning if need be, it can interchange from UART to 12C or SPI within a
gametime decision. These obstacles being overcome demonstrated the understanding
of the intricacies of embedded systems, overall improving the system robustness before
the continuation of a more solidified project.

Taking into account the constraints we faced in the design of tis system, one viewpoint
we needed to ensure based on early agreement is logistics. We agreed initially to remain
committed to working on the budget that 3 senior students can afford, and being able to
develop the system thus far with half the expected budget has been very effective. One
thing to point out is that there may be room for improvement on some hardware
selections, given the remainder of the system continues to be budget-friendly. Even
though the components selected can deliver high functionality for their cost, it is still nice
to have improved data readings for better IC architecture available on the market. With
the current prototype remaining in the early integration stages, the current hardware
selections passed the initial compatibility tests, opening the way for us to charge into the
assembly and validation in senior design 2.

Looking ahead, the remaining goals for the next phase include finalizing the specific
hardware components after further testing and fine tuning, which will in turn lead to the
final PCB layout, full system fabrication, and real-world testing in the dynamic
environment of traffic. Knowing fully well that we are to anticipate challenges related to
environmental interfacing, the hurdles yet to come will test the robustness of the system
with adjustments being made as necessary.

98

Appendix A - References

[1] Maker Pro. (2017). How to Interface Arduino and the MPU 6050 Sensor.
http://maker.pro/arduino/tutorial’how-to-interface-arduino-and-the-mpu-6050-sensor

[2] Avnet. Automotive Radar Systems — The Design Engineer's Guide.
http://my.avnet.com/abacus/solutions/markets/automotive-and-transportation/automotive/comfort
-infotainment-and-safety/automotive-radar/

[3] GitLab. What is Git Version Control?
https://about.gitlab.com/topics/version-control/what-is-git-version-control/

[4] Bare Naked Embedded. (2021). UART vs RS232.
https://barenakedembedded.com/uart-vs-rs232/

[5] Joon Hyung Yi, Inbok Lee, Modar Safir Shbat, & Vyacheslav Tuzlukov. (2011). 24 GHz
FMCW Radar Sensor Algorithms for Car Applications.
https://bgaa.by/sites/default/files/inline-files/212-joonhyungyi-pid1908293 0.pdf

[6] Adafruit. Product Image.

https://cdn-shop.adafruit.com/970x728/5544-02.jpg

[7] Jobit Joseph. (May 16, 2022). Arduino MPU6050 Tutorial - How MPU6050 Module Works
and Interfacing it with Arduino.
https://circuitdigest.com/microcontroller-projects/interfacing-mpu6050-module-with-arduino
[8] Adafruit. CircuitPython.

https://circuitpython.org/

[9] Infineon Technologies. (February 2025). Understanding FMCW Radars: Features and
Operational Principles.
https://community.infineon.com/t5/Knowledge-Base-Articles/Understanding-FMCW-Radars-Feat
ures-and-operational-principles/ta-p/767198

[10] Components101. (March 17, 2021). MPU6050 Module Pinout, Configuration, Features,
Arduino Interfacing & Datasheet.

https://components101.com/sensors/mpu6050-module

[11] Friedrich-Alexander-Universitdt Erlangen-Niirnberg (FAU). Publication 325221941.
https://cris.fau.de/publications/325221941/

[12] Raspberry Pi Foundation. (December 1, 2022). Raspberry Pi Pico Datasheet.
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

[13] Raspberry Pi Foundation. (December 1, 2022). Raspberry Pi 5 Product Brief.
https://datasheets.raspberrypi.com/rpi5S/raspberry-pi-5-product-brief.pdf

[14] G. Venkata Sandeep Reddy B. (June 2024). Overview of GitHub Enterprise.
https://dev.to/g_venkatasandeepreddy b/overview-of-github-enterprise-3jno

[15] Apple Inc. Swift Programming Language.

https://developer.apple.com/swift/

[16] Arduino. Arduino Nano Technical Specifications.
https://docs.arduino.cc/hardware/nano/#tech-specs

[17] Arduino. (April 14, 2025). Arduino Nano Datasheet (A000005).
https://docs.arduino.cc/resources/datasheets/A000005-datasheet.pdf

99

[18] Espressif Systems. ESP-IDF Programming Guide for ESP32.
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/

[19] Wikipedia contributors. (2008). Bitbucket.

https://en.wikipedia.org/wiki/Bitbucket

[20] Wikipedia contributors. (January 2021). Raspberry Pi Pico.
https://en.wikipedia.org/wiki/Raspberry Pi#Raspberry Pi Pico

[21] Wikipedia contributors. (April 2025). STM32.

https://en.wikipedia.org/wiki/STM32

[22] iamaryang. (March 15, 2025). Getting Started with the MPU6050: Beginner-Friendly Guide
with Visual Explanations. Arduino Forum.
https://forum.arduino.cc/t/getting-started-with-the-mpu6050-beginner-friendly-guide-with-visual-
explanations/1364064

[23] weisenhaus. (October 23, 2021). LiDAR sensor not seeing through car windshield. Arduino
Forum.

https://forum.arduino.cc/t/lidar-sensor-not-seeing-through-car-windshield/917780

[24] Highleap Electronic. Beginner’s Guide to STM32 Microcontroller.
https://hilelectronic.com/beginners-guide-to-stm32-microcontroller/

[25] Kickstarter. Product Image.
https://i.kickstarter.com/assets/013/330/729/eca613896¢292ca814915550e6916eb5_original.png
[26] ITIES. (July 2024). MPU-6050: Unraveling the Wonders of a 6-DoF Inertial Measurement
Unit.
https://iies.in/blog/mpu-6050-unraveling-the-wonders-of-a-6-dof-inertial-measurement-unit/
[27] TDK InvenSense. MPU-6050 — Six-Axis (Gyro + Accelerometer) MEMS MotionTracking™
Device.

https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/

[28] InvenSense Inc. (August 19, 2013). MPU-6000 and MPU-6050 Product Specification
(Revision 3.4).
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

[29] ITPreneur. (February 2025). Features of Java and its Importance in 2024.
https://itpreneurpune.com/features-of-java/

[30] JLCPCB. PCB Manufacturing & Assembly Capabilities.
https://jlcpcb.com/capabilities/pcb-capabilities

[31] Joy-IT. Motion Sensor MPU6050 (Gyroscope)
https://joy-it.net/en/products/SEN-MPU6050

[32] Siepert, Bryan, and Isaac Wellish. (November 6, 2019). MPU6050 6-DoF Accelerometer and
Gyro: Pinouts. Adafruit Learning System
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/pinouts

[33] Amazon. Product Image

https://m.media-amazon.com/images/I/61R1A7CuHTL.jpg

[34] Amazon. Product Image
https://m.media-amazon.com/images/I1/6102ZUzB4XL. AC UF894,1000 QLS80 .jpg

[35] George, Damien P. (May 3, 2014). MicroPython — Python for Microcontrollers
https://micropython.org/

[36] OndoSense. FMCW Radar Sensor: How It Works. FMCW Basics

100

https://ondosense.com/en/radar-know-how-optimal-use-of-radar-sensors/fmcw-radar-sensor-basic
s/

[37] Xu, Zhengguang, and Shanyong Wei. (August 11, 2023). FMCW Radar System Interference
Mitigation Based on Time-Domain Signal Reconstruction. Sensors (Basel)
https://pmc.ncbi.nlm.nih.gov/articles/PMC10459047/

[38] Cho, Homin, Yunho Jung, and Seongjoo Lee. (December 26, 2023). FMCW Radar Sensors
with Improved Range Precision by Reusing the Neural Network. Sensors (Basel)
https://pmc.ncbi.nlm.nih.gov/articles/PMC10781233/

[39] Saharawat, Varun. (October 26, 2024). C Programming Language History, Invention,
Timeline & More. PW Skills
https://pwskills.com/blog/c-programming-language-history-invention-timeline-more/

[40] Random Nerd Tutorials. (January 2021). Arduino Guide for MPU-6050 Accelerometer and
Gyroscope Sensor

https://randomnerdtutorials.com/arduino-mpu-6050-accelerometer-gyroscope/

[41] Altium Resources. (May 5, 2021). Serial Communications Protocols — Part Two: UART.
https://resources.altium.com/p/serial-communications-protocols-part-two-uart​:contentRe
ference[oaicite:0]{index=0}

[42] Cadence PCB Solutions. (December 9, 2024). Applying IPC PCB Design Standards.
https://resources.pcb.cadence.com/blog/applying-ipc-pcb-design-standards-cadence​:cont
entReference[oaicite: 1]{index=1}

[43] Pimoroni. Raspberry Pi Pico.
https://shop.pimoroni.com/products/raspberry-pi-pico?variant=32402092294227​:content
Reference[oaicite:3]{index=3

[44] Imperial College London. Radar 6 CW Radar.
https://skynet.ce.ic.ac.uk/notes/Radar 6 CW_Radar.pdf​:contentReference[oaicite:5]{ind
ex=5}

[45] Squishy Circuits. (June 2020). Deep Dive: Mechanical vs Piezoelectric Buzzers.
https://squishycircuits.com/blogs/articles/deep-dive-mechanical-vs-piezoelectric-buzzers​
:contentReference[oaicite:6]{index=6}

[46] Starting Electronics. (March 2025). ESP32 Introduction.
https://startingelectronics.org/articles/ESP32/esp32-introduction/​:contentReference[oaici
te:7]{index=7}

[47] Think Robotics. (May 2024). Deep Dive into UART Protocol.
https://thinkrobotics.com/blogs/learn/deep-dive-into-uart-protocol​:contentReference[oaic
ite:8]{index=8}

[48] UBC Library Research Commons. Getting Started with GitHub.
https://ubc-library-rc.github.io/intro-git/content/04 _github.html​:contentReference[oaicite
:9]{index=9}

[49] Chaudhari, Qasim. (October 2023). FMCW Radar Part 1: Ranging. Wireless Pi.
https://wirelesspi.com/fmcw-radar-part-1-ranging/​:contentReference[oaicite: 11]{index=1
1}

[50] Microchip Technology Inc. (January 2015). ATMEGA328P Datasheet.
https://www.alldatasheet.com/datasheet-pdf/download/1425005/MICROCHIP/ATMEGA328P.ht
ml​:contentReference[oaicite: 13]{index=13}

101

[51] Usach, Miguel. (September 2015). Introduction to SPI Interface. Analog Devices.
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html
​:contentReference[oaicite:15]{index=15}

[52] Analog Devices. (March 2001). Fundamentals of RS232 Serial Communications.
https://www.analog.com/en/resources/technical-articles/fundamentals-of-rs232-serial-communica
tions.html​:contentReference[oaicite: 17] {index=17}

[53] Atlassian. Bitbucket.
https://www.atlassian.com/software/Bitbucket​:contentReference[oaicite: 19] {index=19}
[54] BairesDev. (August 2019). Things You Can Create with Java.
https://www.bairesdev.com/blog/things-you-can-create-with-java/​:contentReference[oaic
ite:21]{index=21}

[55] Circuit Basics. (March 2016). Basics of the SPI Communication Protocol.
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/​:contentRefere
nce[oaicite:23]{index=23}

[56] Codecademy. Learn Python: Python Syntax.
https://www.codecademy.com/article/learn-python-python-syntax​:contentReference[oaic
ite:25]{index=25}

[57] DFRobot. Product 2793: Radar Sensor.
https://www.dfrobot.com/product-2793.html​:contentReference[oaicite:27] {index=27}
[58] Elprocus. MPU6050 Pin Diagram, Circuit and Applications.
https://www.elprocus.com/mpu6050-pin-diagram-circuit-and-applications/​:contentRefer
ence[oaicite:29]{index=29}

[59] ESPBoards.dev. ESP32 Alternatives: STM32 Series.
https://www.espboards.dev/blog/esp32-alternatives/#stm32-series​:contentReference[oaic
ite:31]{index=31}

[60] Etechnophiles. Introduction to ATMEGA328P: Pinout, Datasheet, Specifications.
https://www.etechnophiles.com/introduction-to-atmega328p-pinout-datasheet-specifications/
203;:contentReference[oaicite:33]{index=33}

[61] Instructables. Accelerometer MPU-6050 Communication With AVR MCU.
https://www.instructables.com/Accelerometer-MPU-6050-Communication- With-AVR-MCU/
[62] IPC. IPC-2221A: Generic Standard on Printed Board Design.
https://www.ipc.org/TOC/IPC-2221A.pdf

[63] Joy-IT. Teensy 4.0.

https://www.joy-it.net/en/products/Teensy40

[64] Kev’s Robots. Teensy 4.1 Board Overview.
https://www.kevsrobots.com/resources/boards/teeny4-1.html

[65] Keysight Technologies. Automotive Radar.
https://www.keysight.com/blogs/en/tech/educ/2023/automotive-radar

[66] Lockheed Martin. How Do Radars Work?.
https://www.lockheedmartin.com/en-us/news/features/202 1/how-do-radars-work.html
[67] MCLPCB. IPC Standards for PCBs.
https://www.mclpcb.com/blog/ipc-standards-for-pcbs/

102

[68] NVIDIA. TensorFlow.

https://www.nvidia.com/en-us/glossary/tensorflow/

[69] NXP Semiconductors. UM10204: I>)C-bus Specification and User Manual.
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

[70] Optcore. Difference Between RS-232, RS-422, and RS-485.
https://www.optcore.net/difference-between-rs-232-rs-422-and-rs-485/

[71] Pepperl+Fuchs. Types of Radar Sensors.
https://www.pepperl-fuchs.com/korea/ko/51481.htm

[72] Ghosh, Poulomi. (January 30, 2023). Applying IPC-2221 Standards in Circuit Board Design.
ProtoExpress.

https://www.protoexpress.com/blog/ipc-2221-circuit-board-design/

[73] QuickStart. Learn C Programming in 10 Days.
https://www.quickstart.com/blog/programming-language/learn-c-programming-in-10-days/

[74] Quisure. (October 13, 2020). What Is the Working Principle of the Buzzer?.
https://www.quisure.com/blog/faq/what-is-the-working-principle-of-the-buzzer

[75] Radartutorial.eu. Frequency Modulated Continuous Wave Radar.
https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20R
adar.en.html

[76] Raspberry Pi. Raspberry Pi Pico.

https://www.raspberrypi.com/products/raspberry-pi-pico/

[77] Gupta, Neeraj; Kaith, Deepa; Patel, Janakkumar B. (July 2015). Multiple Master and Slave
Connection in I2C. ResearchGate.
https://www.researchgate.net/figure/Multiple-master-and-slave-connection-in-12C_figl 2819532
26

[78] Yida. (November 7, 2019). Arduino Communication Peripherals: UART, I12C and SPI. Seeed
Studio.
https://www.seeedstudio.com/blog/2019/11/07/arduino-communication-peripherals-uart-i2c-and-s
pi/

[79] STMicroelectronics. STM32 MCU Developer Resources.

https://www.st.com/content/st com/en/stm32-mcu-developer-zone/developer-resources.html

[80] STMicroelectronics. STM32 32-bit Arm Cortex MCUs.
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
[81] STMicroelectronics. (October 2022). STM32H743x1/G Datasheet
https://www.st.com/resource/en/datasheet/stm32h743vi.pdf

[82] Swift.org. About Swift

https://www.swift.org/about/

[83] Valdez, Jonathan, and Jared Becker. (June 2015). Understanding the I12C Bus. Texas
Instruments

https://www.ti.com/lit/an/slva704/slva704.pdf

[84] Tutorialspoint. History of C Programming
https://www.tutorialspoint.com/cprogramming/c_history.htm

[85] Tutorialspoint. Java Overview
https://www.tutorialspoint.com/java/java_overview.htm

[86] Tutorialspoint. Python Overview
https://www.tutorialspoint.com/python/python_overview.htm

103

[87] Tutorialspoint. Swift Overview

https://www.tutorialspoint.com/swift/swift overview.htm

[88] Sophie. (January 7, 2022). STM32H7 Arm Cortex-M7 MCUs: Features, Advantage and
Datasheet. Utmel
https://www.utmel.com/components/stm32h7-arm-cortex-m7-mcus-features-advantage-and-datas
heet?id=1112

[89] W3Schools. Introduction to Python

https://www.w3schools.com/python/python_intro.asp

Appendix B- LLM Prompts

Prompt: What would be the best Raspberry Pi to use for computer vision with an
ESP327?

Answer: +” Best Option for Computer Vision + ESP32: Raspberry Pi 5 (4GB or 8GB)
The Raspberry Pi 5 is currently the most powerful Pi available and a perfect match for
running modern computer vision tasks while communicating with an ESP32. It has a
significantly faster processor than the Pi 4, improved I/O speeds, and better support for
intensive applications like OpenCV and TensorFlow Lite.

©, Why the Pi 5 is Ideal for SafeSight and Vision Tasks:
CPU: Quad-core 64-bit Cortex-A76 @ 2.4GHz — over 2x faster than Pi 4

RAM Options: 4GB or 8GB LPDDR4X — great for multitasking and model inference
USB 3.0: Faster data transfer with cameras and peripherals

Camera Support: Two CSI camera connectors, perfect for stereo vision or dual-camera
setups

PCle Support: Expandable for NVMe SSDs (if needed for fast storage)

2 Use Case Examples:
Real-time image processing (e.g., traffic light detection, face or object recognition)

Running machine learning models for behavior prediction or driver attention detection

Processing data from the ESP32 (e.g., radar or motion sensor) and combining it with
visual input

4, ESP32 Integration Options:
UART: Ideal for serial communication

I2C/SPI: For sensor data or short-distance comms
Wi-Fi: If both devices are on the same network

Bluetooth: For low-power wireless communication

104

@ Recommended Accessories:
Official Raspberry Pi 5 Power Supply (27W USB-C)

Active Cooling System or Heat Sink/Fan Combo — the Pi 5 runs hot under load
Camera Module 3 (with autofocus and HDR) — works natively and supports ML tasks
32GB+ microSD card or NVMe SSD (for large model files or video storage)
If you're working on real-time driver assistance or environmental awareness like in
SafeSight, the Pi 5 gives you enough power to process video streams while handling
communication with the ESP32. It's a future-proof choice, especially if you're considering
deploying deep learning models locally.
Want help setting up OpenCV or TensorFlow Lite on it next?
Prompt: Why is Tensorflow and OpenCV the best to use?
Answer: Great question — here's a breakdown of why TensorFlow and OpenCV are
such a strong combo for a project like SafeSight, especially when running on something
like a Raspberry Pi with an ESP32:

¢ TensorFlow: Best for Machine Learning & Al
TensorFlow is one of the most popular open-source libraries for building and deploying
machine learning models, especially when it comes to image recognition, object
detection, and real-time decision-making.
Why it’s great:
TensorFlow Lite is optimized for edge devices like the Raspberry Pi. It allows you to run

pre-trained neural networks efficiently with low memory and processing power.

You can train models on a PC (or use pre-trained ones) and deploy them on the Pi for
tasks like:

Traffic light recognition
Distracted driver detection
Hand gesture recognition

Strong documentation and community support means it's easier to troubleshoot or find
models for your use case.

xei OpenCV: Best for Image Processing & Computer Vision
OpenCV (Open Source Computer Vision Library) is the go-to toolkit for handling image
and video operations like filtering, object tracking, edge detection, motion analysis, etc.

Why it’s great:
It's lightweight and runs well on Raspberry Pi, even with limited resources.

105

It handles all the image preprocessing that TensorFlow models usually need—like
resizing, color correction, cropping, or converting formats.

Excellent for camera integration, live streaming, or analyzing visual data in real time.
Works directly with the Raspberry Pi Camera Module and USB webcams.

=] Why They Work Best Together:

OpenCV prepares the image (e.g., crops a traffic light from a frame), and TensorFlow

classifies it (e.g., green, yellow, red).

OpenCV can also handle things like drawing bounding boxes or alerts on the screen
based on TensorFlow’s predictions.

Together, they give you a full pipeline from capturing input — processing — making
decisions.

& In the Context of SafeSight:
OpenCV can help detect visual elements (e.g., lane markings, faces, or moving objects).

TensorFlow Lite can take that input and determine what’s happening (e.g., is the driver
distracted? Is there a stop sign ahead?).

This combo turns the Pi into a smart, on-device assistant without needing cloud
processing — perfect for privacy, speed, and reliability in real-world use.

Let me know if you want help choosing a specific model or example script using both!
Prompt: What communication method is best to use between the ESP432 and the Pi?
Answer: Great question — choosing the best communication method between the
ESP32 and the Raspberry Pi depends on what you're sending (sensor data, control

signals, video, etc.), how often you send it, and your project’s environment.

Here’s a breakdown of the most common methods, with a clear recommendation at the
end:

4, 1. UART (Serial Communication) — Best Overall Choice
74 Recommended for most SafeSight use cases

Pros:

Simple and reliable

Easy to implement on both ESP32 and Raspberry Pi (via GPIO)

Low latency

Use Case: Sending sensor readings, commands, or status updates at a steady rate

How: Use GPIO pins on both devices, connect TX <+ RX and GND « GND

106

Speed: Good enough for real-time communication up to 1 Mbps or more

4 Why it's best: It's stable, doesn’t require a network, and avoids the complexity of
protocols like 12C/SPI/Wi-Fi unless needed.

« 2. Wi-Fi (ESP32 as Client or Server)
Pros:

Wireless

Easy to scale across devices

Cons:

More power-hungry

More setup and error handling required (e.g., disconnects)

Use Case: If you want remote monitoring or multiple devices talking to a single Pi
Common Protocols: HTTP, WebSocket, MQTT

{4 Use this if your devices are mobile or you need communication over a distance.

_] 3.12C
Pros:

Can connect multiple devices to one Pi

Cons:

Slower than UART (standard 100—400 kHz)

Limited distance (10—-20 cm reliably)

ESP32 must act as a slave, which is tricky to implement stably
Use Case: Only for basic data sharing if UART isn’t possible

I, Not recommended unless you're familiar with the timing issues involved on the
ESP32 side.

4. SPI
Pros:

Faster than 12C (up to several Mbps)
Cons:

More complex (4 wires: MISO, MOSI, CLK, CS)

107

Needs custom handling for master/slave roles
Use Case: High-speed data transfer (e.g., camera frames or real-time sensor arrays)
I\ Usually overkill unless you're sending high-throughput data at low latency.
€ Summary Recommendation:
Method Best For Complexity Reliability Notes
UART Most SafeSight applications Easy "4 Very High Use serial on GPIO

Wi-Fi Wireless or remote operation .1\ Medium [74 High (with error handling) Great
for mobile or long-range

I2C Simple, low-speed setups I\ Tricky I\ Medium Avoid if timing is
critical

SPI High-speed communication | Complex [%4 High Only if absolutely
needed

“, TL;DR:

Use UART via GPIO for the most stable, simple, and effective communication between
your ESP32 and Raspberry Pi — especially for sending sensor data or control

commands in your SafeSight system.

Need help wiring it up or writing the UART code for both sides?

Prompt: What does the MPU-6050 and the MPU Human Detection Sensor entail?
Answer: Great question — let's break down what the MPU-6050 and MPU-based
Human Detection sensors do, how they work, and how they’re used in projects like
SafeSight.

© 1. MPU-6050 — Accelerometer + Gyroscope Sensor

“, What It Is:

A 6-axis motion tracking sensor that combines:

3-axis accelerometer (measures acceleration in X, Y, Z)

3-axis gyroscope (measures rotation rate around X, Y, 2Z)

W Features:
Small, low-power, low-cost

Uses 12C or SPI for communication
Built-in Digital Motion Processor (DMP) for sensor fusion
Can be used to calculate orientation, motion, and tilt

& Use Cases:
In SafeSight: Can detect sudden movements like harsh braking, swerving, or collisions

Used for:

108

Fall detection

Gesture recognition

Vehicle dynamics

Balance or stability tracking (e.g., robot platforms)

»

& 2."MPU" Human Detection Sensor (e.g., mmWave / PIR / Radar Sensor)

C, Clarification:

“‘MPU” in this case might be misinterpreted — it usually refers to a Microprocessor Unit,
not specifically a human detection sensor. But in projects, you might see:

@ Human Detection Sensor Types:
PIR (Passive Infrared):

Detects changes in infrared heat
Cheap, basic, and detects presence but not direction or distance
mmWave Radar (e.g., C4001, IWR6843):
Much more advanced
Detects motion, presence, breathing, direction, and distance
Works through walls or obstructions
Excellent for detecting humans in real time with precise distance and speed data
= If the sensor is labeled something like "MPU-based Human Detection Sensor," it's
likely referring to an integrated module with:
A microcontroller (MPU)
A human presence detection sensor (usually radar-based)
Communication interfaces (UART, 12C, etc.)
% Summary: What They Entail
SensorType What It Measures Ideal For Notes
MPU-6050 Motion Acceleration & Rotation Crash detection, orientation Needs
calibration for accuracy
Human Detection Sensor Radar/PIR Presence, motion, distance Occupancy
sensing, people tracking mmWave is more reliable than PIR

If you’re building a driver assistance system or in-cabin monitoring setup:

Use the MPU-6050 for motion data (e.g., detecting collisions, turns)

109

Use a human detection sensor (preferably radar-based) for identifying occupants or
monitoring attention and presence

Let me know which sensor model you have, and | can help you interpret its data or set it
up!

110

	Table of Contents
	List of Figures
	
	List of Tables
	1.​ Introduction / Narrative
	1.1 Project Background
	1.2 Project Motivation / Current Commercial Technologies
	1.3 Project Function

	2.​Project Objectives, Requirements, and Goals
	2.1 Project Objectives
	2.2 Goals
	2.3 Requirement Specifications and Constraints
	2.4 Engineering Specifications

	
	2.5 System Diagram and Visualization

	
	3.​Research
	3.1 Technologies
	3.1.1 Raspberry Pi
	3.1.1.1 Raspberry Pi vs. Jetson Nano
	3.1.1.2 Availability and Efficiency
	3.1.1.3 Hardware Accessories
	3.1.1.4 Passive vs. Active Cooling
	3.1.1.5 Camera Accessory
	3.1.1.6 Raspberry Pi 5 Physical Diagram

	3.1.2 mmWave C4001 24GHz Human Presence Detection Sensor
	3.1.3 Inertial Sensor
	3.1.3.1 MPU-6050
	3.1.3.2 Sensor Limitations

	3.1.4 Alarm System
	3.1.4.1 Speaker and Amplifier
	3.1.4.2 ESP 32 Compatibility
	3.1.4.3 Piezo Electric Buzzer
	3.1.4.4 ESP32 Compatibility

	3.1.5 MCU
	3.1.5.1 ESP32
	3.1.5.2 Raspberry Pi Pico
	3.1.5.3 STM32 Series
	3.1.5.4 Arduino Nano
	3.1.5.5 Teensy
	3.1.5.6 Our Selection: ESP32

	3.1.6 MCU Communication Protocols For Components
	3.1.6.1 UART Communication Protocol​
	3.1.6.2 SPI Communication Protocol
	3.1.6.3 I2C Communication Protocol
	3.1.6.4 Summary

	3.1.7 Development Environment: Languages and Repositories
	3.1.7.1 C/C++
	3.1.7.2 Swift & Swift UI
	3.1.7.3 Java
	3.1.7.4 Python
	3.1.7.5 GitHub
	3.1.7.6 Bitbucket
	3.1.7.7 Our Selection: C/C++, Swift/SwiftUI, Git/GitHub

	3.1.8 Computer Vision
	3.1.8.2 Tensorflow and TensorflowLite
	3.1.8.3 Keras
	3.1.8.4 YOLO
	3.1.8.5 Scikit-image

	4.​Standards and Design Constraints
	4.1 Industrial Standards
	4.1.1 PCB Design Standards
	4.1.2 UART Communication Method Standards
	4.1.3 I2C Protocol Standards

	4.2 Design Constraints
	4.2.1 Time
	4.2.2 Economic
	4.2.3 Federal Regulation Constraints
	4.2.4 Remaining Constraints
	4.2.4.1 Health and Safety
	4.2.4.2 Manufacturability

	5.​Artificial Intelligence Comparison
	5.1 ChatGPT
	5.2 Perplexity
	5.3 Benefits of Using AI

	6.​Hardware Design
	6.1 Power Supply Design - Regulators
	6.1.1 ESP 32 Power Supply Regulator - TPS564252
	6.1.2 Raspberry Pi Power Supply Regulator - TPS566242

	6.2 Development Board - ESP32
	6.2.1 Micro USB - UART Conversion Schematic
	6.2.2 IC CP2102 - UART Conversion Schematic
	6.2.3 AMS1117 - USB 5V - 3.3V Power Supply Converter

	6.3 Custom Footprints - Schematic to PCB
	6.3.1 C4001 Radar Sensor - Custom Footprint
	6.3.2 MPU-6050 Accelerometer - Custom Footprint

	6.4 Final Schematic - All Components Included

	7. Software Design
	7.1 Software Logic Introduction - Scenarios
	7.1.1 Red-Light Scenario
	7.1.2 Driver Distracted While Driving Scenario

	7.2 Application Design
	7.2.1 Initial Design and Thought Process
	7.2.2 The Start Screen
	7.2.3 Bluetooth Device Selection
	7.2.4 The Home Screen
	7.2.4.1 The Home Screen: Driver Report
	7.2.4.2 The Home Screen: Photo Gallery
	7.2.4.3 The Home Screen: Profile Page

	8. System Fabrication/ Prototype Construction
	8.1 PCB Design - Organization
	8.2 PCB Design - Routing
	8.3 PCB Design - DRC and 3D/2D Verification

	9. System Testing and Evaluation
	9.1 Radar Integration
	9.2 MCU-6050 Integration
	9.3 Radar, Accelerometer, and Raspberry Pi integration

	 10. Administrative Content
	10.1 Budget and Financing
	10.2 Milestones for the Project
	10.2.1 Senior Design 1
	10.2.2 Senior Design 2

	10.3 Table of Work Distribution

	11. Conclusion
	Appendix A - References
	Appendix B- LLM Prompts

